利用伽辽金近似的集值非线性估计

J. Kenney, R. Beard, W. Stirling
{"title":"利用伽辽金近似的集值非线性估计","authors":"J. Kenney, R. Beard, W. Stirling","doi":"10.1109/ACC.1998.703279","DOIUrl":null,"url":null,"abstract":"A set-valued state estimator for nonlinear dynamic systems is presented. The estimator uses the Galerkin approximation to solve Kolmogorov's equation for the diffusion of a continuous-time, continuous-state nonlinear system, as well as for implementing discrete time updates of noisy measurements. This filtering of the state is accomplished for a convex set of distributions simultaneously, and a functional representation of the set of resulting means is provided at any desired time instance.","PeriodicalId":364267,"journal":{"name":"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Set-valued nonlinear estimation using the Galerkin approximation\",\"authors\":\"J. Kenney, R. Beard, W. Stirling\",\"doi\":\"10.1109/ACC.1998.703279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set-valued state estimator for nonlinear dynamic systems is presented. The estimator uses the Galerkin approximation to solve Kolmogorov's equation for the diffusion of a continuous-time, continuous-state nonlinear system, as well as for implementing discrete time updates of noisy measurements. This filtering of the state is accomplished for a convex set of distributions simultaneously, and a functional representation of the set of resulting means is provided at any desired time instance.\",\"PeriodicalId\":364267,\"journal\":{\"name\":\"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1998.703279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1998.703279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种非线性动态系统的集值状态估计器。该估计器使用伽辽金近似来求解连续时间、连续状态非线性系统扩散的Kolmogorov方程,以及实现噪声测量的离散时间更新。状态的过滤同时针对一组凸分布完成,并在任何期望的时间实例中提供结果均值集的函数表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set-valued nonlinear estimation using the Galerkin approximation
A set-valued state estimator for nonlinear dynamic systems is presented. The estimator uses the Galerkin approximation to solve Kolmogorov's equation for the diffusion of a continuous-time, continuous-state nonlinear system, as well as for implementing discrete time updates of noisy measurements. This filtering of the state is accomplished for a convex set of distributions simultaneously, and a functional representation of the set of resulting means is provided at any desired time instance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信