基于多目标遗传算法的车削工艺及切削力优化

Afrim Gjelaj, Besar Berisha, F. Smaili
{"title":"基于多目标遗传算法的车削工艺及切削力优化","authors":"Afrim Gjelaj, Besar Berisha, F. Smaili","doi":"10.13189/UJME.2019.070204","DOIUrl":null,"url":null,"abstract":"Application of artificial intelligence in manufacturing process has great impact factor. This work paper is focused into optimization of machining by turning process regarding to the analysing of tool selection (TS), tool path length (TPL) and machining parameters for turning operation using the artificial Intelligence. Except of solving of problems for tool selection and tool path length, here also will be analysed the cutting force (Fc) by turning process whereas as case of research material is steel C45. The results of measurement of the main cutting force Fc, are compared and predicted in theoretical and practical way. Also, all of requirements are fulfilled in regard of the expression. In same time are optimized the main machining parameters regarding to the cutting force with utilization of the Multi-Objective Genetic Algorithm (MOGA). Results for cutting power Pc and Metal removal rate MRR using Pareto Front are obtained using MOGA.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimization of Turning Process and Cutting Force Using Multiobjective Genetic Algorithm\",\"authors\":\"Afrim Gjelaj, Besar Berisha, F. Smaili\",\"doi\":\"10.13189/UJME.2019.070204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application of artificial intelligence in manufacturing process has great impact factor. This work paper is focused into optimization of machining by turning process regarding to the analysing of tool selection (TS), tool path length (TPL) and machining parameters for turning operation using the artificial Intelligence. Except of solving of problems for tool selection and tool path length, here also will be analysed the cutting force (Fc) by turning process whereas as case of research material is steel C45. The results of measurement of the main cutting force Fc, are compared and predicted in theoretical and practical way. Also, all of requirements are fulfilled in regard of the expression. In same time are optimized the main machining parameters regarding to the cutting force with utilization of the Multi-Objective Genetic Algorithm (MOGA). Results for cutting power Pc and Metal removal rate MRR using Pareto Front are obtained using MOGA.\",\"PeriodicalId\":275027,\"journal\":{\"name\":\"Universal Journal of Mechanical Engineering\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJME.2019.070204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJME.2019.070204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

人工智能在制造过程中的应用具有很大的影响因素。本文从车削加工的刀具选择(TS)、刀具轨迹长度(TPL)和加工参数的分析出发,利用人工智能对车削加工过程进行优化。除了解决刀具选择和刀具轨迹长度的问题外,本文还将分析车削过程中的切削力(Fc),而研究材料为C45钢。对主切削力Fc的测量结果进行了理论和实际的比较和预测。同时,满足了表达式的所有要求。同时利用多目标遗传算法(MOGA)针对切削力对主要加工参数进行了优化。利用MOGA得到了Pareto Front切削功率Pc和金属去除率MRR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Turning Process and Cutting Force Using Multiobjective Genetic Algorithm
Application of artificial intelligence in manufacturing process has great impact factor. This work paper is focused into optimization of machining by turning process regarding to the analysing of tool selection (TS), tool path length (TPL) and machining parameters for turning operation using the artificial Intelligence. Except of solving of problems for tool selection and tool path length, here also will be analysed the cutting force (Fc) by turning process whereas as case of research material is steel C45. The results of measurement of the main cutting force Fc, are compared and predicted in theoretical and practical way. Also, all of requirements are fulfilled in regard of the expression. In same time are optimized the main machining parameters regarding to the cutting force with utilization of the Multi-Objective Genetic Algorithm (MOGA). Results for cutting power Pc and Metal removal rate MRR using Pareto Front are obtained using MOGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信