用未知的带状结构协方差矩阵检测存在噪声的信号数

W. Chen, J. Reilly, K. Wong
{"title":"用未知的带状结构协方差矩阵检测存在噪声的信号数","authors":"W. Chen, J. Reilly, K. Wong","doi":"10.1109/PACRIM.1991.160698","DOIUrl":null,"url":null,"abstract":"Based on the fact that a noise is usually correlated over a limited spatial range, a detection scheme employing two spatially separated arrays is proposed. To extend this concept to the detection problem is quite natural. The problem is how to find a theoretically solid, functionally robust algorithm to process the array outputs. A canonical correlation is introduced to solve the problem, and a satisfactory method is developed.<<ETX>>","PeriodicalId":289986,"journal":{"name":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Detection of the number of signals in the presence of noise with an unknown, banded structured covariance matrix\",\"authors\":\"W. Chen, J. Reilly, K. Wong\",\"doi\":\"10.1109/PACRIM.1991.160698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the fact that a noise is usually correlated over a limited spatial range, a detection scheme employing two spatially separated arrays is proposed. To extend this concept to the detection problem is quite natural. The problem is how to find a theoretically solid, functionally robust algorithm to process the array outputs. A canonical correlation is introduced to solve the problem, and a satisfactory method is developed.<<ETX>>\",\"PeriodicalId\":289986,\"journal\":{\"name\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1991.160698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1991.160698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于噪声通常在有限空间范围内相关的事实,提出了一种采用两个空间分离阵列的检测方案。将这个概念扩展到检测问题是很自然的。问题是如何找到一个理论上可靠,功能健壮的算法来处理数组输出。引入典型相关来解决这一问题,并给出了一个令人满意的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of the number of signals in the presence of noise with an unknown, banded structured covariance matrix
Based on the fact that a noise is usually correlated over a limited spatial range, a detection scheme employing two spatially separated arrays is proposed. To extend this concept to the detection problem is quite natural. The problem is how to find a theoretically solid, functionally robust algorithm to process the array outputs. A canonical correlation is introduced to solve the problem, and a satisfactory method is developed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信