{"title":"电路仿真中纳米电子电阻开关的可变性和不可重复性建模","authors":"A. Heittmann, T. Noll","doi":"10.1109/ASPDAC.2013.6509646","DOIUrl":null,"url":null,"abstract":"This paper presents a device model for nanoelectronic resistive switches which are based on the electrochemical metallization effect (ECM). The focus is set on modeling variability as well as irreproducibility which are essential properties of scaled nanoelectronic devices. In particular, a Poisson-based random ion deposition model and a non-linear filament surface effect are described. The model is especially useful for circuit simulation and can be implemented on standard circuit simulation platforms such as Spice or Spectre using inbuilt standard elements. Based on this model, effects of variability were examined by Monte Carlo simulation for a particular hybrid CMOS/nanoelectronic circuit. The results show that the proposed model is able to cover significant scaling effects, which is necessary for prospective design space exploration and circuit optimization.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling variability and irreproducibility of nanoelectronic resistive switches for circuit simulation\",\"authors\":\"A. Heittmann, T. Noll\",\"doi\":\"10.1109/ASPDAC.2013.6509646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a device model for nanoelectronic resistive switches which are based on the electrochemical metallization effect (ECM). The focus is set on modeling variability as well as irreproducibility which are essential properties of scaled nanoelectronic devices. In particular, a Poisson-based random ion deposition model and a non-linear filament surface effect are described. The model is especially useful for circuit simulation and can be implemented on standard circuit simulation platforms such as Spice or Spectre using inbuilt standard elements. Based on this model, effects of variability were examined by Monte Carlo simulation for a particular hybrid CMOS/nanoelectronic circuit. The results show that the proposed model is able to cover significant scaling effects, which is necessary for prospective design space exploration and circuit optimization.\",\"PeriodicalId\":297528,\"journal\":{\"name\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2013.6509646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling variability and irreproducibility of nanoelectronic resistive switches for circuit simulation
This paper presents a device model for nanoelectronic resistive switches which are based on the electrochemical metallization effect (ECM). The focus is set on modeling variability as well as irreproducibility which are essential properties of scaled nanoelectronic devices. In particular, a Poisson-based random ion deposition model and a non-linear filament surface effect are described. The model is especially useful for circuit simulation and can be implemented on standard circuit simulation platforms such as Spice or Spectre using inbuilt standard elements. Based on this model, effects of variability were examined by Monte Carlo simulation for a particular hybrid CMOS/nanoelectronic circuit. The results show that the proposed model is able to cover significant scaling effects, which is necessary for prospective design space exploration and circuit optimization.