城市地区高光谱图像的半监督局部特征提取

H. Adebanjo, J. Tapamo
{"title":"城市地区高光谱图像的半监督局部特征提取","authors":"H. Adebanjo, J. Tapamo","doi":"10.1109/ICASTECH.2013.6707487","DOIUrl":null,"url":null,"abstract":"We propose a novel Semi Supervised Local Embedding (SSLE) method for feature extraction from hyperspectral data. The proposed method combines a supervised method (Linear Discriminant Analysis (LDA)) and an unsupervised method (Local Linear Embedding (LLE)). The underlying idea is to get the Principal Components (PC) from the original data and input training samples from the principal components into LLE, LDA and into our proposed SSLE algorithm. Thereafter, Support Vetctor Machine (SVM) was used for classification. The overall accuracy of this new algorithm is then compared with other existing semi-supervised algorithms. Experiments on hyperspectral image show the efficacy of the proposed algorithm.","PeriodicalId":173317,"journal":{"name":"2013 International Conference on Adaptive Science and Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Semi-supervised local feature extraction of hyperspectral images over urban areas\",\"authors\":\"H. Adebanjo, J. Tapamo\",\"doi\":\"10.1109/ICASTECH.2013.6707487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel Semi Supervised Local Embedding (SSLE) method for feature extraction from hyperspectral data. The proposed method combines a supervised method (Linear Discriminant Analysis (LDA)) and an unsupervised method (Local Linear Embedding (LLE)). The underlying idea is to get the Principal Components (PC) from the original data and input training samples from the principal components into LLE, LDA and into our proposed SSLE algorithm. Thereafter, Support Vetctor Machine (SVM) was used for classification. The overall accuracy of this new algorithm is then compared with other existing semi-supervised algorithms. Experiments on hyperspectral image show the efficacy of the proposed algorithm.\",\"PeriodicalId\":173317,\"journal\":{\"name\":\"2013 International Conference on Adaptive Science and Technology\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Adaptive Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASTECH.2013.6707487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Adaptive Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASTECH.2013.6707487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种新的半监督局部嵌入(SSLE)方法用于高光谱数据的特征提取。该方法结合了监督方法(线性判别分析(LDA))和非监督方法(局部线性嵌入(LLE))。其基本思想是从原始数据中获取主成分(PC),并从主成分中输入训练样本到LLE, LDA和我们提出的SSLE算法中。然后,使用支持向量机(SVM)进行分类。然后将该算法的总体精度与现有的半监督算法进行了比较。在高光谱图像上的实验表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-supervised local feature extraction of hyperspectral images over urban areas
We propose a novel Semi Supervised Local Embedding (SSLE) method for feature extraction from hyperspectral data. The proposed method combines a supervised method (Linear Discriminant Analysis (LDA)) and an unsupervised method (Local Linear Embedding (LLE)). The underlying idea is to get the Principal Components (PC) from the original data and input training samples from the principal components into LLE, LDA and into our proposed SSLE algorithm. Thereafter, Support Vetctor Machine (SVM) was used for classification. The overall accuracy of this new algorithm is then compared with other existing semi-supervised algorithms. Experiments on hyperspectral image show the efficacy of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信