Tamas K. Lengyel, S. Maresca, B. Payne, George D. Webster, S. Vogl, A. Kiayias
{"title":"DRAKVUF动态恶意软件分析系统的可扩展性、保真性和隐蔽性","authors":"Tamas K. Lengyel, S. Maresca, B. Payne, George D. Webster, S. Vogl, A. Kiayias","doi":"10.1145/2664243.2664252","DOIUrl":null,"url":null,"abstract":"Malware is one of the biggest security threats on the Internet today and deploying effective defensive solutions requires the rapid analysis of a continuously increasing number of malware samples. With the proliferation of metamorphic malware the analysis is further complicated as the efficacy of signature-based static analysis systems is greatly reduced. While dynamic malware analysis is an effective alternative, the approach faces significant challenges as the ever increasing number of samples requiring analysis places a burden on hardware resources. At the same time modern malware can both detect the monitoring environment and hide in unmonitored corners of the system. In this paper we present DRAKVUF, a novel dynamic malware analysis system designed to address these challenges by building on the latest hardware virtualization extensions and the Xen hypervisor. We present a technique for improving stealth by initiating the execution of malware samples without leaving any trace in the analysis machine. We also present novel techniques to eliminate blind-spots created by kernel-mode rootkits by extending the scope of monitoring to include kernel internal functions, and to monitor file-system accesses through the kernel's heap allocations. With extensive tests performed on recent malware samples we show that DRAKVUF achieves significant improvements in conserving hardware resources while providing a stealthy, in-depth view into the behavior of modern malware.","PeriodicalId":104443,"journal":{"name":"Proceedings of the 30th Annual Computer Security Applications Conference","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"172","resultStr":"{\"title\":\"Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis system\",\"authors\":\"Tamas K. Lengyel, S. Maresca, B. Payne, George D. Webster, S. Vogl, A. Kiayias\",\"doi\":\"10.1145/2664243.2664252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware is one of the biggest security threats on the Internet today and deploying effective defensive solutions requires the rapid analysis of a continuously increasing number of malware samples. With the proliferation of metamorphic malware the analysis is further complicated as the efficacy of signature-based static analysis systems is greatly reduced. While dynamic malware analysis is an effective alternative, the approach faces significant challenges as the ever increasing number of samples requiring analysis places a burden on hardware resources. At the same time modern malware can both detect the monitoring environment and hide in unmonitored corners of the system. In this paper we present DRAKVUF, a novel dynamic malware analysis system designed to address these challenges by building on the latest hardware virtualization extensions and the Xen hypervisor. We present a technique for improving stealth by initiating the execution of malware samples without leaving any trace in the analysis machine. We also present novel techniques to eliminate blind-spots created by kernel-mode rootkits by extending the scope of monitoring to include kernel internal functions, and to monitor file-system accesses through the kernel's heap allocations. With extensive tests performed on recent malware samples we show that DRAKVUF achieves significant improvements in conserving hardware resources while providing a stealthy, in-depth view into the behavior of modern malware.\",\"PeriodicalId\":104443,\"journal\":{\"name\":\"Proceedings of the 30th Annual Computer Security Applications Conference\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"172\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2664243.2664252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2664243.2664252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis system
Malware is one of the biggest security threats on the Internet today and deploying effective defensive solutions requires the rapid analysis of a continuously increasing number of malware samples. With the proliferation of metamorphic malware the analysis is further complicated as the efficacy of signature-based static analysis systems is greatly reduced. While dynamic malware analysis is an effective alternative, the approach faces significant challenges as the ever increasing number of samples requiring analysis places a burden on hardware resources. At the same time modern malware can both detect the monitoring environment and hide in unmonitored corners of the system. In this paper we present DRAKVUF, a novel dynamic malware analysis system designed to address these challenges by building on the latest hardware virtualization extensions and the Xen hypervisor. We present a technique for improving stealth by initiating the execution of malware samples without leaving any trace in the analysis machine. We also present novel techniques to eliminate blind-spots created by kernel-mode rootkits by extending the scope of monitoring to include kernel internal functions, and to monitor file-system accesses through the kernel's heap allocations. With extensive tests performed on recent malware samples we show that DRAKVUF achieves significant improvements in conserving hardware resources while providing a stealthy, in-depth view into the behavior of modern malware.