基于神经网络和EKF的全向机器人SLAM算法

Ahmad M. Derbas, T. Tutunji
{"title":"基于神经网络和EKF的全向机器人SLAM算法","authors":"Ahmad M. Derbas, T. Tutunji","doi":"10.1109/JEEIT58638.2023.10185708","DOIUrl":null,"url":null,"abstract":"This paper describes a Simultaneous Localization and Mapping (SLAM) algorithm that uses Infrared sensors, monocular camera, and motor shaft encoders to build a map of an unknown environment. The proposed algorithm is divided into three stages. First, Artificial Neural Networks (ANN) are used to analyze the sensors and camera image data to search for possible paths. Then, the camera image edges are detected using speeded up robust features (SURF) to find alternate paths. Finally, the paths from the previous two stages are compared and the best match path is found while Extended Kalman Filters (EKF) are used to estimate the robot position and orientation. The proposed algorithm is programmed using MATLAB software, interfaced with an omnidirectional robot by means of wireless communication, and validated experimentally using Robotino platform.","PeriodicalId":177556,"journal":{"name":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","volume":"404 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLAM Algorithm for Omni-Directional Robots based on ANN and EKF\",\"authors\":\"Ahmad M. Derbas, T. Tutunji\",\"doi\":\"10.1109/JEEIT58638.2023.10185708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a Simultaneous Localization and Mapping (SLAM) algorithm that uses Infrared sensors, monocular camera, and motor shaft encoders to build a map of an unknown environment. The proposed algorithm is divided into three stages. First, Artificial Neural Networks (ANN) are used to analyze the sensors and camera image data to search for possible paths. Then, the camera image edges are detected using speeded up robust features (SURF) to find alternate paths. Finally, the paths from the previous two stages are compared and the best match path is found while Extended Kalman Filters (EKF) are used to estimate the robot position and orientation. The proposed algorithm is programmed using MATLAB software, interfaced with an omnidirectional robot by means of wireless communication, and validated experimentally using Robotino platform.\",\"PeriodicalId\":177556,\"journal\":{\"name\":\"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)\",\"volume\":\"404 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JEEIT58638.2023.10185708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEEIT58638.2023.10185708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种同时定位和地图绘制(SLAM)算法,该算法使用红外传感器、单目摄像机和电机轴编码器来构建未知环境的地图。该算法分为三个阶段。首先,利用人工神经网络(ANN)对传感器和摄像机图像数据进行分析,寻找可能的路径;然后,使用加速鲁棒特征(SURF)检测相机图像边缘以找到替代路径。最后,对前两阶段的路径进行比较,找到最佳匹配路径,并使用扩展卡尔曼滤波(EKF)估计机器人的位置和方向。利用MATLAB软件对该算法进行编程,通过无线通信与全向机器人进行接口,并在Robotino平台上进行实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLAM Algorithm for Omni-Directional Robots based on ANN and EKF
This paper describes a Simultaneous Localization and Mapping (SLAM) algorithm that uses Infrared sensors, monocular camera, and motor shaft encoders to build a map of an unknown environment. The proposed algorithm is divided into three stages. First, Artificial Neural Networks (ANN) are used to analyze the sensors and camera image data to search for possible paths. Then, the camera image edges are detected using speeded up robust features (SURF) to find alternate paths. Finally, the paths from the previous two stages are compared and the best match path is found while Extended Kalman Filters (EKF) are used to estimate the robot position and orientation. The proposed algorithm is programmed using MATLAB software, interfaced with an omnidirectional robot by means of wireless communication, and validated experimentally using Robotino platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信