基于加权分数融合技术的人脸与掌纹生物特征识别

M. Rane, U. Bhadade
{"title":"基于加权分数融合技术的人脸与掌纹生物特征识别","authors":"M. Rane, U. Bhadade","doi":"10.1109/PuneCon50868.2020.9362433","DOIUrl":null,"url":null,"abstract":"A multimodal fusion biometric verification system for face and palmprint modalities is proposed. The goal is to achieve a higher Accuracy for standard Databases. Fusion is done at score level using feature extraction algorithms such as, Radon transform, Ridgelet transform, TPLBP, FPLBP HOG, Gabor filter and DCT. Experiments are conducted on face94, face95, face96, FRGC IITD and PolyU databases. Only 1 image is given as a training set for each subject in respective databases. Matching Algorithm is used so as to achieve maximum GAR (Genuine acceptance rate). The results are discussed further in the paper. The accuracy achieved is 99.6% for FAR (False Acceptance rate) of 0.1%. Experimental results indicate that this approach although simple yet can achieve a greater accuracy.","PeriodicalId":368862,"journal":{"name":"2020 IEEE Pune Section International Conference (PuneCon)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Face and Palmprint Biometric Recognition by using Weighted Score Fusion Technique\",\"authors\":\"M. Rane, U. Bhadade\",\"doi\":\"10.1109/PuneCon50868.2020.9362433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multimodal fusion biometric verification system for face and palmprint modalities is proposed. The goal is to achieve a higher Accuracy for standard Databases. Fusion is done at score level using feature extraction algorithms such as, Radon transform, Ridgelet transform, TPLBP, FPLBP HOG, Gabor filter and DCT. Experiments are conducted on face94, face95, face96, FRGC IITD and PolyU databases. Only 1 image is given as a training set for each subject in respective databases. Matching Algorithm is used so as to achieve maximum GAR (Genuine acceptance rate). The results are discussed further in the paper. The accuracy achieved is 99.6% for FAR (False Acceptance rate) of 0.1%. Experimental results indicate that this approach although simple yet can achieve a greater accuracy.\",\"PeriodicalId\":368862,\"journal\":{\"name\":\"2020 IEEE Pune Section International Conference (PuneCon)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Pune Section International Conference (PuneCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PuneCon50868.2020.9362433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pune Section International Conference (PuneCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PuneCon50868.2020.9362433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

提出了一种基于人脸和掌纹的多模态融合生物特征验证系统。目标是为标准数据库实现更高的准确性。使用Radon变换、Ridgelet变换、TPLBP、FPLBP HOG、Gabor滤波器和DCT等特征提取算法在分数级别进行融合。实验在face94、face95、face96、FRGC IITD和PolyU数据库上进行。在各自的数据库中,每个主题只给出一个图像作为训练集。采用匹配算法,使正品接受率达到最大。本文对所得结果作了进一步的讨论。在FAR(误接受率)为0.1%的情况下,准确率达到99.6%。实验结果表明,该方法虽然简单,但可以达到较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face and Palmprint Biometric Recognition by using Weighted Score Fusion Technique
A multimodal fusion biometric verification system for face and palmprint modalities is proposed. The goal is to achieve a higher Accuracy for standard Databases. Fusion is done at score level using feature extraction algorithms such as, Radon transform, Ridgelet transform, TPLBP, FPLBP HOG, Gabor filter and DCT. Experiments are conducted on face94, face95, face96, FRGC IITD and PolyU databases. Only 1 image is given as a training set for each subject in respective databases. Matching Algorithm is used so as to achieve maximum GAR (Genuine acceptance rate). The results are discussed further in the paper. The accuracy achieved is 99.6% for FAR (False Acceptance rate) of 0.1%. Experimental results indicate that this approach although simple yet can achieve a greater accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信