Heinz算子均值的几个乘法不等式

S. Dragomir
{"title":"Heinz算子均值的几个乘法不等式","authors":"S. Dragomir","doi":"10.52547/maco.2.1.1","DOIUrl":null,"url":null,"abstract":"In this paper we obtain some new multiplicative inequalities for Heinz operator mean. 1. Introduction Throughout this paper A; B are positive invertible operators on a complex Hilbert space (H; h ; i) : We use the following notations for operators and 2 [0; 1] Ar B := (1 )A+ B; the weighted operator arithmetic mean, and A] B := A 1=2 A BA 1=2 A; the weighted operator geometric mean [14]. When = 1 2 we write ArB and A]B for brevity, respectively. De\u0085ne the Heinz operator mean by H (A;B) := 1 2 (A] B +A]1 B) : The following interpolatory inequality is obvious (1.1) A]B H (A;B) ArB for any 2 [0; 1]: We recall that Specht’s ratio is de\u0085ned by [16] (1.2) S (h) := 8> >: h 1 h 1 e ln h 1 h 1 if h 2 (0; 1) [ (1;1) ; 1 if h = 1: It is well known that limh!1 S (h) = 1; S (h) = S 1 h > 1 for h > 0; h 6= 1. The function is decreasing on (0; 1) and increasing on (1;1) : The following result provides an upper and lower bound for the Heinz mean in terms of the operator geometric mean A]B : Theorem 1 (Dragomir, 2015 [6]). Assume that A; B are positive invertible operators and the constants M > m > 0 are such that (1.3) mA B MA: 1991 Mathematics Subject Classi\u0085cation. 47A63, 47A30, 15A60, 26D15, 26D10.","PeriodicalId":360771,"journal":{"name":"Mathematical Analysis and Convex Optimization","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Multiplicative Inequalities for Heinz Operator Mean\",\"authors\":\"S. Dragomir\",\"doi\":\"10.52547/maco.2.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we obtain some new multiplicative inequalities for Heinz operator mean. 1. Introduction Throughout this paper A; B are positive invertible operators on a complex Hilbert space (H; h ; i) : We use the following notations for operators and 2 [0; 1] Ar B := (1 )A+ B; the weighted operator arithmetic mean, and A] B := A 1=2 A BA 1=2 A; the weighted operator geometric mean [14]. When = 1 2 we write ArB and A]B for brevity, respectively. De\\u0085ne the Heinz operator mean by H (A;B) := 1 2 (A] B +A]1 B) : The following interpolatory inequality is obvious (1.1) A]B H (A;B) ArB for any 2 [0; 1]: We recall that Specht’s ratio is de\\u0085ned by [16] (1.2) S (h) := 8> >: h 1 h 1 e ln h 1 h 1 if h 2 (0; 1) [ (1;1) ; 1 if h = 1: It is well known that limh!1 S (h) = 1; S (h) = S 1 h > 1 for h > 0; h 6= 1. The function is decreasing on (0; 1) and increasing on (1;1) : The following result provides an upper and lower bound for the Heinz mean in terms of the operator geometric mean A]B : Theorem 1 (Dragomir, 2015 [6]). Assume that A; B are positive invertible operators and the constants M > m > 0 are such that (1.3) mA B MA: 1991 Mathematics Subject Classi\\u0085cation. 47A63, 47A30, 15A60, 26D15, 26D10.\",\"PeriodicalId\":360771,\"journal\":{\"name\":\"Mathematical Analysis and Convex Optimization\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Analysis and Convex Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/maco.2.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Analysis and Convex Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/maco.2.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文得到了Heinz算子均值的几个新的乘法不等式。1. 导论全文A;B是复Hilbert空间(H;h;i):对运算符和2 [0;[1] A:= (1)A+ B;加权算子算术均值,且A] B:= A 1=2 A BA 1=2 A;加权算子几何均值[14]。当= 1 2时,为简洁起见,我们分别写成ArB和A]B。对于任意2 [0;;;],(1)A]B, H (A;B) = 1 2 (A] B +A]1 B):下面的插值不等式是明显的(1.1)A]B H (A;B) ArB1]:我们记得Specht的比值为:> (1.2)s (h):= 8> >: h 1 h 1 e ln h 1 h 1如果h 2 (0);1) [(1;1);1如果h = 1:众所周知,limh!1 S (h) = 1;S (h) = S 1 h > 1对于h >;h6 = 1。函数在(0;1),并在(1;1)上递增:以下结果根据算子几何均值A]B提供了Heinz均值的上界和下界:定理1 (Dragomir, 2015[6])。假设A;B是正可逆算子,且常数M > M > 0满足(1.3)mA B mA: 1991数学学科类…教育。47a63, 47a30, 15a60, 26d15, 26d10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Multiplicative Inequalities for Heinz Operator Mean
In this paper we obtain some new multiplicative inequalities for Heinz operator mean. 1. Introduction Throughout this paper A; B are positive invertible operators on a complex Hilbert space (H; h ; i) : We use the following notations for operators and 2 [0; 1] Ar B := (1 )A+ B; the weighted operator arithmetic mean, and A] B := A 1=2 A BA 1=2 A; the weighted operator geometric mean [14]. When = 1 2 we write ArB and A]B for brevity, respectively. De…ne the Heinz operator mean by H (A;B) := 1 2 (A] B +A]1 B) : The following interpolatory inequality is obvious (1.1) A]B H (A;B) ArB for any 2 [0; 1]: We recall that Specht’s ratio is de…ned by [16] (1.2) S (h) := 8> >: h 1 h 1 e ln h 1 h 1 if h 2 (0; 1) [ (1;1) ; 1 if h = 1: It is well known that limh!1 S (h) = 1; S (h) = S 1 h > 1 for h > 0; h 6= 1. The function is decreasing on (0; 1) and increasing on (1;1) : The following result provides an upper and lower bound for the Heinz mean in terms of the operator geometric mean A]B : Theorem 1 (Dragomir, 2015 [6]). Assume that A; B are positive invertible operators and the constants M > m > 0 are such that (1.3) mA B MA: 1991 Mathematics Subject Classi…cation. 47A63, 47A30, 15A60, 26D15, 26D10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信