多尺度图散射变换

Genjia Liu, Maosen Li, Siheng Chen
{"title":"多尺度图散射变换","authors":"Genjia Liu, Maosen Li, Siheng Chen","doi":"10.23919/eusipco55093.2022.9909669","DOIUrl":null,"url":null,"abstract":"Graph scattering transform (GST) is mathematically-designed graph convolutional model that iteratively applies graph filter banks to achieve comprehensive feature extraction from graph signals. While GST performs excessive decomposition of graph signals in the graph spectral domain, it does not explicitly achieve multiresolution in the graph vertex domain, causing potential failure in handling graphs with hierarchical structures. To address the limitation, this work proposes novel multiscale graph scattering transform (MGST) to achieve hierarchical representations along both graph vertex and spectral domains. With recursive partitioning a graph structure, we yield multiple subgraphs at various scales and then perform scattering frequency decomposition on each subgraph. MGST finally obtains a series of representations and each of them corresponds to a specific graph vertex-spectral subband, achieving multiresolution along both graph vertex and spectral domains. In the experiments, we validate the superior empirical performances of MGST and visualize each graph vertex-spectral subband.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Graph Scattering Transform\",\"authors\":\"Genjia Liu, Maosen Li, Siheng Chen\",\"doi\":\"10.23919/eusipco55093.2022.9909669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph scattering transform (GST) is mathematically-designed graph convolutional model that iteratively applies graph filter banks to achieve comprehensive feature extraction from graph signals. While GST performs excessive decomposition of graph signals in the graph spectral domain, it does not explicitly achieve multiresolution in the graph vertex domain, causing potential failure in handling graphs with hierarchical structures. To address the limitation, this work proposes novel multiscale graph scattering transform (MGST) to achieve hierarchical representations along both graph vertex and spectral domains. With recursive partitioning a graph structure, we yield multiple subgraphs at various scales and then perform scattering frequency decomposition on each subgraph. MGST finally obtains a series of representations and each of them corresponds to a specific graph vertex-spectral subband, achieving multiresolution along both graph vertex and spectral domains. In the experiments, we validate the superior empirical performances of MGST and visualize each graph vertex-spectral subband.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图散射变换(GST)是一种数学设计的图卷积模型,它迭代地应用图滤波器组来实现对图信号的综合特征提取。虽然GST在图谱域中对图信号进行了过度分解,但它并没有明确地在图顶点域中实现多分辨率,从而导致处理具有分层结构的图的潜在失败。为了解决这一限制,本研究提出了一种新的多尺度图散射变换(MGST)来实现沿图顶点和谱域的分层表示。通过对图结构进行递归划分,得到不同尺度的子图,然后对每个子图进行散射频率分解。MGST最终得到一系列表示,每个表示对应一个特定的图顶点-谱子带,实现了图顶点和谱域的多分辨率。在实验中,我们验证了MGST优越的经验性能,并可视化了每个图顶点光谱子带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Graph Scattering Transform
Graph scattering transform (GST) is mathematically-designed graph convolutional model that iteratively applies graph filter banks to achieve comprehensive feature extraction from graph signals. While GST performs excessive decomposition of graph signals in the graph spectral domain, it does not explicitly achieve multiresolution in the graph vertex domain, causing potential failure in handling graphs with hierarchical structures. To address the limitation, this work proposes novel multiscale graph scattering transform (MGST) to achieve hierarchical representations along both graph vertex and spectral domains. With recursive partitioning a graph structure, we yield multiple subgraphs at various scales and then perform scattering frequency decomposition on each subgraph. MGST finally obtains a series of representations and each of them corresponds to a specific graph vertex-spectral subband, achieving multiresolution along both graph vertex and spectral domains. In the experiments, we validate the superior empirical performances of MGST and visualize each graph vertex-spectral subband.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信