基于混合学习算法的径向基函数神经网络动态系统辨识

Jun Yu Li, Feng Zhao
{"title":"基于混合学习算法的径向基函数神经网络动态系统辨识","authors":"Jun Yu Li, Feng Zhao","doi":"10.1109/ISSCAA.2006.1627562","DOIUrl":null,"url":null,"abstract":"The paper demonstrates that radial basis function network (RBFN) with adaptive centers and width can be used effectively for identification of nonlinear dynamic system. The proposed RBFN is trained by hybrid learning algorithm, which uses conjugate gradient optimization algorithm to obtain the center and width of each radial basis function and the least squares method to obtain the weights. To avoid capturing a local optimum, regularization error energy function is used and the centers of basis functions are initialized using a fuzzy C-means clustering method. Simulation results reveal that the identification schemes based on RBFN gives considerably better performance and show faster learning in comparison to previous methods","PeriodicalId":275436,"journal":{"name":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Identification of dynamical systems using radial basis function neural networks with hybrid learning algorithm\",\"authors\":\"Jun Yu Li, Feng Zhao\",\"doi\":\"10.1109/ISSCAA.2006.1627562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper demonstrates that radial basis function network (RBFN) with adaptive centers and width can be used effectively for identification of nonlinear dynamic system. The proposed RBFN is trained by hybrid learning algorithm, which uses conjugate gradient optimization algorithm to obtain the center and width of each radial basis function and the least squares method to obtain the weights. To avoid capturing a local optimum, regularization error energy function is used and the centers of basis functions are initialized using a fuzzy C-means clustering method. Simulation results reveal that the identification schemes based on RBFN gives considerably better performance and show faster learning in comparison to previous methods\",\"PeriodicalId\":275436,\"journal\":{\"name\":\"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCAA.2006.1627562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2006.1627562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文论证了具有自适应中心和宽度的径向基函数网络(RBFN)可以有效地用于非线性动态系统的辨识。采用混合学习算法对RBFN进行训练,该算法采用共轭梯度优化算法获得各径向基函数的中心和宽度,采用最小二乘法获得权值。为了避免捕获局部最优,使用正则化误差能量函数,并使用模糊c均值聚类方法初始化基函数的中心。仿真结果表明,基于RBFN的识别方案比以前的方法具有更好的性能和更快的学习速度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of dynamical systems using radial basis function neural networks with hybrid learning algorithm
The paper demonstrates that radial basis function network (RBFN) with adaptive centers and width can be used effectively for identification of nonlinear dynamic system. The proposed RBFN is trained by hybrid learning algorithm, which uses conjugate gradient optimization algorithm to obtain the center and width of each radial basis function and the least squares method to obtain the weights. To avoid capturing a local optimum, regularization error energy function is used and the centers of basis functions are initialized using a fuzzy C-means clustering method. Simulation results reveal that the identification schemes based on RBFN gives considerably better performance and show faster learning in comparison to previous methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信