移动设备的视觉灯光标志

N. Rajagopal, Patrick Lazik, Anthony G. Rowe
{"title":"移动设备的视觉灯光标志","authors":"N. Rajagopal, Patrick Lazik, Anthony G. Rowe","doi":"10.1109/IPSN.2014.6846757","DOIUrl":null,"url":null,"abstract":"The omnipresence of indoor lighting makes it an ideal vehicle for pervasive communication with mobile devices. In this paper, we present a communication scheme that enables interior ambient LED lighting systems to send data to mobile devices using either cameras or light sensors. By exploiting rolling shutter camera sensors that are common on tablets, laptops and smartphones, it is possible to detect high-frequency changes in light intensity reflected off of surfaces and in direct line-of-sight of the camera. We present a demodulation approach that allows smartphones to accurately detect frequencies as high as 8kHz with 0.2kHz channel separation. In order to avoid humanly perceivable flicker in the lighting, our system operates at frequencies above 2kHz and compensates for the non-ideal frequency response of standard LED drivers by adjusting the light's duty-cycle. By modulating the PWM signal commonly used to drive LED lighting systems, we are able to encode data that can be used as localization landmarks. We show through experiments how a binary frequency shift keying modulation scheme can be used to transmit data at 1.25 bytes per second (fast enough to send an ID code) from up to 29 unique light sources simultaneously in a single collision domain. We also show how tags can demodulate the same signals using a light sensor instead of a camera for low-power applications.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"198","resultStr":"{\"title\":\"Visual light landmarks for mobile devices\",\"authors\":\"N. Rajagopal, Patrick Lazik, Anthony G. Rowe\",\"doi\":\"10.1109/IPSN.2014.6846757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The omnipresence of indoor lighting makes it an ideal vehicle for pervasive communication with mobile devices. In this paper, we present a communication scheme that enables interior ambient LED lighting systems to send data to mobile devices using either cameras or light sensors. By exploiting rolling shutter camera sensors that are common on tablets, laptops and smartphones, it is possible to detect high-frequency changes in light intensity reflected off of surfaces and in direct line-of-sight of the camera. We present a demodulation approach that allows smartphones to accurately detect frequencies as high as 8kHz with 0.2kHz channel separation. In order to avoid humanly perceivable flicker in the lighting, our system operates at frequencies above 2kHz and compensates for the non-ideal frequency response of standard LED drivers by adjusting the light's duty-cycle. By modulating the PWM signal commonly used to drive LED lighting systems, we are able to encode data that can be used as localization landmarks. We show through experiments how a binary frequency shift keying modulation scheme can be used to transmit data at 1.25 bytes per second (fast enough to send an ID code) from up to 29 unique light sources simultaneously in a single collision domain. We also show how tags can demodulate the same signals using a light sensor instead of a camera for low-power applications.\",\"PeriodicalId\":297218,\"journal\":{\"name\":\"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"198\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPSN.2014.6846757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2014.6846757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 198

摘要

无所不在的室内照明使其成为与移动设备进行无处不在的通信的理想工具。在本文中,我们提出了一种通信方案,使室内环境LED照明系统能够使用摄像头或光传感器向移动设备发送数据。通过利用平板电脑、笔记本电脑和智能手机上常见的卷帘式相机传感器,可以检测到物体表面和相机直接视线范围内反射的光强度的高频变化。我们提出了一种解调方法,允许智能手机精确检测频率高达8kHz与0.2kHz信道分离。为了避免人类在照明中可感知的闪烁,我们的系统工作在2kHz以上的频率,并通过调节光的占空比来补偿标准LED驱动器的非理想频率响应。通过调制通常用于驱动LED照明系统的PWM信号,我们能够编码可用作定位标志的数据。我们通过实验展示了二进制频移键控调制方案如何用于在单个碰撞域中同时从多达29个唯一光源以每秒1.25字节(足以发送ID码)的速度传输数据。我们还展示了标签如何在低功耗应用中使用光传感器而不是相机来解调相同的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual light landmarks for mobile devices
The omnipresence of indoor lighting makes it an ideal vehicle for pervasive communication with mobile devices. In this paper, we present a communication scheme that enables interior ambient LED lighting systems to send data to mobile devices using either cameras or light sensors. By exploiting rolling shutter camera sensors that are common on tablets, laptops and smartphones, it is possible to detect high-frequency changes in light intensity reflected off of surfaces and in direct line-of-sight of the camera. We present a demodulation approach that allows smartphones to accurately detect frequencies as high as 8kHz with 0.2kHz channel separation. In order to avoid humanly perceivable flicker in the lighting, our system operates at frequencies above 2kHz and compensates for the non-ideal frequency response of standard LED drivers by adjusting the light's duty-cycle. By modulating the PWM signal commonly used to drive LED lighting systems, we are able to encode data that can be used as localization landmarks. We show through experiments how a binary frequency shift keying modulation scheme can be used to transmit data at 1.25 bytes per second (fast enough to send an ID code) from up to 29 unique light sources simultaneously in a single collision domain. We also show how tags can demodulate the same signals using a light sensor instead of a camera for low-power applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信