数据依赖图的特征向量定位

A. Cloninger, W. Czaja
{"title":"数据依赖图的特征向量定位","authors":"A. Cloninger, W. Czaja","doi":"10.1109/SAMPTA.2015.7148963","DOIUrl":null,"url":null,"abstract":"We aim to understand and characterize embeddings of datasets with small anomalous clusters using the Laplacian Eigenmaps algorithm. To do this, we characterize the order in which eigenvectors of a disjoint graph Laplacian emerge and the support of those eigenvectors. We then extend this characterization to weakly connected graphs with clusters of differing sizes, utilizing the theory of invariant subspace perturbations and proving some novel results. Finally, we propose a simple segmentation algorithm for anomalous clusters based off our theory.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Eigenvector localization on data-dependent graphs\",\"authors\":\"A. Cloninger, W. Czaja\",\"doi\":\"10.1109/SAMPTA.2015.7148963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to understand and characterize embeddings of datasets with small anomalous clusters using the Laplacian Eigenmaps algorithm. To do this, we characterize the order in which eigenvectors of a disjoint graph Laplacian emerge and the support of those eigenvectors. We then extend this characterization to weakly connected graphs with clusters of differing sizes, utilizing the theory of invariant subspace perturbations and proving some novel results. Finally, we propose a simple segmentation algorithm for anomalous clusters based off our theory.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们的目标是使用拉普拉斯特征映射算法来理解和表征具有小异常簇的数据集嵌入。为了做到这一点,我们描述了一个不相交图拉普拉斯的特征向量出现的顺序和这些特征向量的支持度。然后,我们利用不变子空间摄动理论,将这一表征推广到具有不同大小簇的弱连通图,并证明了一些新的结果。最后,在此基础上提出了一种简单的异常聚类分割算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvector localization on data-dependent graphs
We aim to understand and characterize embeddings of datasets with small anomalous clusters using the Laplacian Eigenmaps algorithm. To do this, we characterize the order in which eigenvectors of a disjoint graph Laplacian emerge and the support of those eigenvectors. We then extend this characterization to weakly connected graphs with clusters of differing sizes, utilizing the theory of invariant subspace perturbations and proving some novel results. Finally, we propose a simple segmentation algorithm for anomalous clusters based off our theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信