用语篇结构和变形法区分生物医学语料库中的焦点实体和背景实体

Antonio José Jimeno Yepes, Karin M. Verspoor
{"title":"用语篇结构和变形法区分生物医学语料库中的焦点实体和背景实体","authors":"Antonio José Jimeno Yepes, Karin M. Verspoor","doi":"10.18653/v1/2022.louhi-1.4","DOIUrl":null,"url":null,"abstract":"Scientific documents typically contain numerous entity mentions, while only a subset are directly relevant to the key contributions of the paper. Distinguishing these focus entities from background ones effectively could improve the recovery of relevant documents and the extraction of information from documents. To study the identification of focus entities, we developed two large datasets of disease-causing biological pathogens using MEDLINE, the largest collection of biomedical citations, and PubMed Central, a collection of full text articles. The focus entities were identified using human-curated indexing on these collections. Experiments with machine learning methods to identify focus entities show that transformer methods achieve high precision and recall and that document discourse information is relevant. The work lays the foundation for more targeted retrieval/summarisation of entity-relevant documents.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinguishing between focus and background entities in biomedical corpora using discourse structure and transformers\",\"authors\":\"Antonio José Jimeno Yepes, Karin M. Verspoor\",\"doi\":\"10.18653/v1/2022.louhi-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific documents typically contain numerous entity mentions, while only a subset are directly relevant to the key contributions of the paper. Distinguishing these focus entities from background ones effectively could improve the recovery of relevant documents and the extraction of information from documents. To study the identification of focus entities, we developed two large datasets of disease-causing biological pathogens using MEDLINE, the largest collection of biomedical citations, and PubMed Central, a collection of full text articles. The focus entities were identified using human-curated indexing on these collections. Experiments with machine learning methods to identify focus entities show that transformer methods achieve high precision and recall and that document discourse information is relevant. The work lays the foundation for more targeted retrieval/summarisation of entity-relevant documents.\",\"PeriodicalId\":448872,\"journal\":{\"name\":\"International Workshop on Health Text Mining and Information Analysis\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Health Text Mining and Information Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.louhi-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Health Text Mining and Information Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.louhi-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学文献通常包含许多实体提及,而只有一个子集与论文的关键贡献直接相关。有效地将这些焦点实体与背景实体区分开来,可以提高相关文档的恢复和文档信息的提取。为了研究焦点实体的识别,我们使用MEDLINE(最大的生物医学引文集)和PubMed Central(全文文章集)开发了两个大型的致病生物病原体数据集。在这些集合上使用人工编制的索引来确定焦点实体。用机器学习方法识别焦点实体的实验表明,转换方法具有较高的准确率和召回率,并且文档话语信息是相关的。这项工作为更有针对性地检索/总结与实体有关的文件奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinguishing between focus and background entities in biomedical corpora using discourse structure and transformers
Scientific documents typically contain numerous entity mentions, while only a subset are directly relevant to the key contributions of the paper. Distinguishing these focus entities from background ones effectively could improve the recovery of relevant documents and the extraction of information from documents. To study the identification of focus entities, we developed two large datasets of disease-causing biological pathogens using MEDLINE, the largest collection of biomedical citations, and PubMed Central, a collection of full text articles. The focus entities were identified using human-curated indexing on these collections. Experiments with machine learning methods to identify focus entities show that transformer methods achieve high precision and recall and that document discourse information is relevant. The work lays the foundation for more targeted retrieval/summarisation of entity-relevant documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信