AVEC 2016挑战赛多模态情绪识别

Filip Povolný, P. Matejka, Michal Hradiš, A. Popková, Lubomír Otrusina, P. Smrz, Ian D. Wood, Cécile Robin, L. Lamel
{"title":"AVEC 2016挑战赛多模态情绪识别","authors":"Filip Povolný, P. Matejka, Michal Hradiš, A. Popková, Lubomír Otrusina, P. Smrz, Ian D. Wood, Cécile Robin, L. Lamel","doi":"10.1145/2988257.2988268","DOIUrl":null,"url":null,"abstract":"This paper describes a systems for emotion recognition and its application on the dataset from the AV+EC 2016 Emotion Recognition Challenge. The realized system was produced and submitted to the AV+EC 2016 evaluation, making use of all three modalities (audio, video, and physiological data). Our work primarily focused on features derived from audio. The original audio features were complement with bottleneck features and also text-based emotion recognition which is based on transcribing audio by an automatic speech recognition system and applying resources such as word embedding models and sentiment lexicons. Our multimodal fusion reached CCC=0.855 on dev set for arousal and 0.713 for valence. CCC on test set is 0.719 and 0.596 for arousal and valence respectively.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Multimodal Emotion Recognition for AVEC 2016 Challenge\",\"authors\":\"Filip Povolný, P. Matejka, Michal Hradiš, A. Popková, Lubomír Otrusina, P. Smrz, Ian D. Wood, Cécile Robin, L. Lamel\",\"doi\":\"10.1145/2988257.2988268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a systems for emotion recognition and its application on the dataset from the AV+EC 2016 Emotion Recognition Challenge. The realized system was produced and submitted to the AV+EC 2016 evaluation, making use of all three modalities (audio, video, and physiological data). Our work primarily focused on features derived from audio. The original audio features were complement with bottleneck features and also text-based emotion recognition which is based on transcribing audio by an automatic speech recognition system and applying resources such as word embedding models and sentiment lexicons. Our multimodal fusion reached CCC=0.855 on dev set for arousal and 0.713 for valence. CCC on test set is 0.719 and 0.596 for arousal and valence respectively.\",\"PeriodicalId\":432793,\"journal\":{\"name\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2988257.2988268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

本文介绍了一种情绪识别系统及其在AV+EC 2016情绪识别挑战赛数据集上的应用。制作完成的系统并提交给AV+EC 2016评估,使用了所有三种模式(音频、视频和生理数据)。我们的工作主要集中在源自音频的功能上。在原有音频特征的基础上补充瓶颈特征和基于文本的情感识别,即通过自动语音识别系统转录音频,利用词嵌入模型和情感词汇等资源进行情感识别。我们的多模态融合在开发集上达到了CCC=0.855,在效价集上达到了0.713。唤醒和效价在测试集上的CCC值分别为0.719和0.596。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Emotion Recognition for AVEC 2016 Challenge
This paper describes a systems for emotion recognition and its application on the dataset from the AV+EC 2016 Emotion Recognition Challenge. The realized system was produced and submitted to the AV+EC 2016 evaluation, making use of all three modalities (audio, video, and physiological data). Our work primarily focused on features derived from audio. The original audio features were complement with bottleneck features and also text-based emotion recognition which is based on transcribing audio by an automatic speech recognition system and applying resources such as word embedding models and sentiment lexicons. Our multimodal fusion reached CCC=0.855 on dev set for arousal and 0.713 for valence. CCC on test set is 0.719 and 0.596 for arousal and valence respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信