{"title":"基于动态n-Gram的TF-IDF特征提取在印尼语网络欺凌分类中的应用","authors":"Yudi Setiawan, N. Maulidevi, K. Surendro","doi":"10.1145/3587828.3587858","DOIUrl":null,"url":null,"abstract":"Cyberbullying detection in a sentence or utterance has challenges due to syntactic and meaning variations (lexical). Term Frequency-Inverse Document Frequency (TF-IDF) carries out textual feature extraction to produce candidates thematically based on word occurrence statistics. However, these candidates are generated without considering a term relationship between constituent elements in the parsing language syntax. This study discusses a TF-IDF feature extraction model using the n-Gram approach to produce candidate feature selection based on a specified term relationship. Thresholding applications for the formation of dynamic n-Gram segmentation were also discussed. Furthermore, the dynamic n-Gram model in TF-IDF feature extraction can be used in cyberbullying classification to overcome variations in syntax and meaning of sentences/speech from Bahasa Indonesia.","PeriodicalId":340917,"journal":{"name":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Dynamic n-Gram to Enhance TF-IDF Features Extraction for Bahasa Indonesia Cyberbullying Classification\",\"authors\":\"Yudi Setiawan, N. Maulidevi, K. Surendro\",\"doi\":\"10.1145/3587828.3587858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyberbullying detection in a sentence or utterance has challenges due to syntactic and meaning variations (lexical). Term Frequency-Inverse Document Frequency (TF-IDF) carries out textual feature extraction to produce candidates thematically based on word occurrence statistics. However, these candidates are generated without considering a term relationship between constituent elements in the parsing language syntax. This study discusses a TF-IDF feature extraction model using the n-Gram approach to produce candidate feature selection based on a specified term relationship. Thresholding applications for the formation of dynamic n-Gram segmentation were also discussed. Furthermore, the dynamic n-Gram model in TF-IDF feature extraction can be used in cyberbullying classification to overcome variations in syntax and meaning of sentences/speech from Bahasa Indonesia.\",\"PeriodicalId\":340917,\"journal\":{\"name\":\"Proceedings of the 2023 12th International Conference on Software and Computer Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 12th International Conference on Software and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3587828.3587858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587828.3587858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于句法和意义的变化(词汇),网络欺凌在句子或话语中的检测存在挑战。Term Frequency- inverse Document Frequency (TF-IDF)是一种基于词频统计的文本特征提取方法。但是,在生成这些候选项时没有考虑解析语言语法中组成元素之间的术语关系。本研究讨论了一种TF-IDF特征提取模型,该模型使用n-Gram方法根据指定的术语关系产生候选特征选择。本文还讨论了阈值分割在动态n图分割中的应用。此外,TF-IDF特征提取中的动态n-Gram模型可用于网络欺凌分类,以克服印尼语句子/语音的句法和意义差异。
The Use of Dynamic n-Gram to Enhance TF-IDF Features Extraction for Bahasa Indonesia Cyberbullying Classification
Cyberbullying detection in a sentence or utterance has challenges due to syntactic and meaning variations (lexical). Term Frequency-Inverse Document Frequency (TF-IDF) carries out textual feature extraction to produce candidates thematically based on word occurrence statistics. However, these candidates are generated without considering a term relationship between constituent elements in the parsing language syntax. This study discusses a TF-IDF feature extraction model using the n-Gram approach to produce candidate feature selection based on a specified term relationship. Thresholding applications for the formation of dynamic n-Gram segmentation were also discussed. Furthermore, the dynamic n-Gram model in TF-IDF feature extraction can be used in cyberbullying classification to overcome variations in syntax and meaning of sentences/speech from Bahasa Indonesia.