边缘透明AR处理加速

M. Trinelli, Massimo Gallo, M. Rifai, Fabio Pianese
{"title":"边缘透明AR处理加速","authors":"M. Trinelli, Massimo Gallo, M. Rifai, Fabio Pianese","doi":"10.1145/3301418.3313942","DOIUrl":null,"url":null,"abstract":"Mobile devices are increasingly capable of supporting advanced functionalities but still face fundamental resource limitations. While the development of custom accelerators for compute-intensive functions is progressing, precious battery life and quality vs. latency trade-offs are limiting the potential of applications relying on processing real-time, computational-intensive functions, such as Augmented Reality. Transparent network support for on-the-fly media processing at the edge can significantly extend the capabilities of mobile devices without the need for API changes. In this paper we introduce NEAR, a framework for transparent live video processing and augmentation at the network edge, along with its architecture and preliminary performance evaluation in an object detection use case.","PeriodicalId":131097,"journal":{"name":"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Transparent AR Processing Acceleration at the Edge\",\"authors\":\"M. Trinelli, Massimo Gallo, M. Rifai, Fabio Pianese\",\"doi\":\"10.1145/3301418.3313942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile devices are increasingly capable of supporting advanced functionalities but still face fundamental resource limitations. While the development of custom accelerators for compute-intensive functions is progressing, precious battery life and quality vs. latency trade-offs are limiting the potential of applications relying on processing real-time, computational-intensive functions, such as Augmented Reality. Transparent network support for on-the-fly media processing at the edge can significantly extend the capabilities of mobile devices without the need for API changes. In this paper we introduce NEAR, a framework for transparent live video processing and augmentation at the network edge, along with its architecture and preliminary performance evaluation in an object detection use case.\",\"PeriodicalId\":131097,\"journal\":{\"name\":\"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3301418.3313942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301418.3313942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

移动设备越来越能够支持高级功能,但仍然面临基本的资源限制。虽然用于计算密集型功能的定制加速器的开发正在取得进展,但宝贵的电池寿命和质量与延迟之间的权衡限制了依赖于处理实时计算密集型功能(如增强现实)的应用程序的潜力。对边缘动态媒体处理的透明网络支持可以显著扩展移动设备的功能,而无需更改API。在本文中,我们介绍了NEAR,一个用于网络边缘透明实时视频处理和增强的框架,以及它的架构和在目标检测用例中的初步性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transparent AR Processing Acceleration at the Edge
Mobile devices are increasingly capable of supporting advanced functionalities but still face fundamental resource limitations. While the development of custom accelerators for compute-intensive functions is progressing, precious battery life and quality vs. latency trade-offs are limiting the potential of applications relying on processing real-time, computational-intensive functions, such as Augmented Reality. Transparent network support for on-the-fly media processing at the edge can significantly extend the capabilities of mobile devices without the need for API changes. In this paper we introduce NEAR, a framework for transparent live video processing and augmentation at the network edge, along with its architecture and preliminary performance evaluation in an object detection use case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信