{"title":"使用组合分支双仿真的可诊断性验证","authors":"Mona Noori Hosseini, B. Lennartson","doi":"10.1109/WODES.2016.7497855","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient diagnosability verification technique, based on a general abstraction approach. More specifically, branching bisimulation including state labels with explicit divergence (BBSD) is defined. This bisimulation preserves the temporal logic property that verifies diagnosability. Based on a proposed BBSD algorithm, compositional abstraction for modular diagnosability verification is shown to offer a significant state space reduction in comparison to state-of-the-art techniques. This is illustrated by verifying non-diagnosability analytically for a set of synchronized components, where the abstracted solution is independent of the number of components and the number of observable events.","PeriodicalId":268613,"journal":{"name":"2016 13th International Workshop on Discrete Event Systems (WODES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diagnosability verification using compositional branching bisimulation\",\"authors\":\"Mona Noori Hosseini, B. Lennartson\",\"doi\":\"10.1109/WODES.2016.7497855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient diagnosability verification technique, based on a general abstraction approach. More specifically, branching bisimulation including state labels with explicit divergence (BBSD) is defined. This bisimulation preserves the temporal logic property that verifies diagnosability. Based on a proposed BBSD algorithm, compositional abstraction for modular diagnosability verification is shown to offer a significant state space reduction in comparison to state-of-the-art techniques. This is illustrated by verifying non-diagnosability analytically for a set of synchronized components, where the abstracted solution is independent of the number of components and the number of observable events.\",\"PeriodicalId\":268613,\"journal\":{\"name\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WODES.2016.7497855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Workshop on Discrete Event Systems (WODES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2016.7497855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diagnosability verification using compositional branching bisimulation
This paper presents an efficient diagnosability verification technique, based on a general abstraction approach. More specifically, branching bisimulation including state labels with explicit divergence (BBSD) is defined. This bisimulation preserves the temporal logic property that verifies diagnosability. Based on a proposed BBSD algorithm, compositional abstraction for modular diagnosability verification is shown to offer a significant state space reduction in comparison to state-of-the-art techniques. This is illustrated by verifying non-diagnosability analytically for a set of synchronized components, where the abstracted solution is independent of the number of components and the number of observable events.