科学数据挖掘与StripMiner/sup TM/

M. Embrechts, F. Arciniegas, M. Ozdemir, M. Momma
{"title":"科学数据挖掘与StripMiner/sup TM/","authors":"M. Embrechts, F. Arciniegas, M. Ozdemir, M. Momma","doi":"10.1109/SMCIA.2001.936721","DOIUrl":null,"url":null,"abstract":"The paper introduces scientific data mining, the standard data-mining problem, and the strip-mining problem. StripMiner/sup TM/, a shell program for feature reduction and predictive modeling, integrates the executions of several different machine-learning models (partial least squares regression, genetic algorithms, support vector machines, neural networks, and local learning). This paper introduces the StripMiner/sup TM/ code, its functionality, and its options.","PeriodicalId":104202,"journal":{"name":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scientific data mining with StripMiner/sup TM/\",\"authors\":\"M. Embrechts, F. Arciniegas, M. Ozdemir, M. Momma\",\"doi\":\"10.1109/SMCIA.2001.936721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces scientific data mining, the standard data-mining problem, and the strip-mining problem. StripMiner/sup TM/, a shell program for feature reduction and predictive modeling, integrates the executions of several different machine-learning models (partial least squares regression, genetic algorithms, support vector machines, neural networks, and local learning). This paper introduces the StripMiner/sup TM/ code, its functionality, and its options.\",\"PeriodicalId\":104202,\"journal\":{\"name\":\"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMCIA.2001.936721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2001.936721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

介绍了科学数据挖掘、标准数据挖掘问题和条带数据挖掘问题。StripMiner/sup TM/是一个用于特征约简和预测建模的shell程序,它集成了几种不同的机器学习模型(偏最小二乘回归、遗传算法、支持向量机、神经网络和局部学习)的执行。本文介绍了StripMiner/sup TM/代码、功能和选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scientific data mining with StripMiner/sup TM/
The paper introduces scientific data mining, the standard data-mining problem, and the strip-mining problem. StripMiner/sup TM/, a shell program for feature reduction and predictive modeling, integrates the executions of several different machine-learning models (partial least squares regression, genetic algorithms, support vector machines, neural networks, and local learning). This paper introduces the StripMiner/sup TM/ code, its functionality, and its options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信