有限导体带厚度微带线的谱域分析

Wu Yanmin, Gao Bo, Chen Yan, Tian Yu, Tong Ling
{"title":"有限导体带厚度微带线的谱域分析","authors":"Wu Yanmin, Gao Bo, Chen Yan, Tian Yu, Tong Ling","doi":"10.1109/GSMM.2008.4534620","DOIUrl":null,"url":null,"abstract":"Spectral-domain approach is adopted in this paper to analyze the dispersion characteristics of microstrip lines with finite conductor strip thickness based on an approximate model. In the model, the thick conductor strip is replaced by two parallel strips without thickness considering the skin-effect of high-frequency currents. The dyadic Green's functions needed in the analysis are obtained by spectral-domain immittance approach. Some numerical results are presented and show good validity.","PeriodicalId":304483,"journal":{"name":"2008 Global Symposium on Millimeter Waves","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Microstrip Lines with Finite Conductor Strip Thickness by Spectral-Domain Approach\",\"authors\":\"Wu Yanmin, Gao Bo, Chen Yan, Tian Yu, Tong Ling\",\"doi\":\"10.1109/GSMM.2008.4534620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral-domain approach is adopted in this paper to analyze the dispersion characteristics of microstrip lines with finite conductor strip thickness based on an approximate model. In the model, the thick conductor strip is replaced by two parallel strips without thickness considering the skin-effect of high-frequency currents. The dyadic Green's functions needed in the analysis are obtained by spectral-domain immittance approach. Some numerical results are presented and show good validity.\",\"PeriodicalId\":304483,\"journal\":{\"name\":\"2008 Global Symposium on Millimeter Waves\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Global Symposium on Millimeter Waves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSMM.2008.4534620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Global Symposium on Millimeter Waves","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2008.4534620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文基于近似模型,采用谱域方法分析了有限导体带厚度微带线的色散特性。在模型中,考虑到高频电流的集肤效应,将厚导体带替换为两条无厚度的平行带。分析中需要的并矢格林函数通过谱域阻抗法得到。给出了一些数值计算结果,表明了较好的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Microstrip Lines with Finite Conductor Strip Thickness by Spectral-Domain Approach
Spectral-domain approach is adopted in this paper to analyze the dispersion characteristics of microstrip lines with finite conductor strip thickness based on an approximate model. In the model, the thick conductor strip is replaced by two parallel strips without thickness considering the skin-effect of high-frequency currents. The dyadic Green's functions needed in the analysis are obtained by spectral-domain immittance approach. Some numerical results are presented and show good validity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信