{"title":"具有输入约束和状态约束的模糊仿射系统的稳定模型预测控制","authors":"Tiejun Zhang, G. Feng, J. Lu","doi":"10.1109/FUZZY.2007.4295357","DOIUrl":null,"url":null,"abstract":"In this paper, a fuzzy affine model, which is more capable of representing strongly nonlinear dynamics, is used for predictive controller design. Based on piecewise quadratic Lyapunov functions, the proposed fuzzy affine model predictive control approach can ensure both the closed-loop system stability and the satisfactory transient control performance even under input and state constraints. With the help of partitioned degenerate ellipsoids and S-procedure, the large terminal invariant set of a fuzzy affine system can be achieved offline by solving a convex semi-definite programming problem subject to some linear matrix inequalities, rather than the non-convex bilinear matrix inequalities as in conventional fuzzy affine model based control. Then with the associated terminal cost, the resulting online open-loop predictive control approach can be formulated as a standard quadratic programming problem, which is readily solvable. Simulation results have demonstrated the performance of the proposed approach.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stable Model Predictive Control of Fuzzy Affine Systems with Input and State Constraints\",\"authors\":\"Tiejun Zhang, G. Feng, J. Lu\",\"doi\":\"10.1109/FUZZY.2007.4295357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fuzzy affine model, which is more capable of representing strongly nonlinear dynamics, is used for predictive controller design. Based on piecewise quadratic Lyapunov functions, the proposed fuzzy affine model predictive control approach can ensure both the closed-loop system stability and the satisfactory transient control performance even under input and state constraints. With the help of partitioned degenerate ellipsoids and S-procedure, the large terminal invariant set of a fuzzy affine system can be achieved offline by solving a convex semi-definite programming problem subject to some linear matrix inequalities, rather than the non-convex bilinear matrix inequalities as in conventional fuzzy affine model based control. Then with the associated terminal cost, the resulting online open-loop predictive control approach can be formulated as a standard quadratic programming problem, which is readily solvable. Simulation results have demonstrated the performance of the proposed approach.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stable Model Predictive Control of Fuzzy Affine Systems with Input and State Constraints
In this paper, a fuzzy affine model, which is more capable of representing strongly nonlinear dynamics, is used for predictive controller design. Based on piecewise quadratic Lyapunov functions, the proposed fuzzy affine model predictive control approach can ensure both the closed-loop system stability and the satisfactory transient control performance even under input and state constraints. With the help of partitioned degenerate ellipsoids and S-procedure, the large terminal invariant set of a fuzzy affine system can be achieved offline by solving a convex semi-definite programming problem subject to some linear matrix inequalities, rather than the non-convex bilinear matrix inequalities as in conventional fuzzy affine model based control. Then with the associated terminal cost, the resulting online open-loop predictive control approach can be formulated as a standard quadratic programming problem, which is readily solvable. Simulation results have demonstrated the performance of the proposed approach.