拉格朗日态如何演变成随机波

M. Ingremeau, A. Rivera
{"title":"拉格朗日态如何演变成随机波","authors":"M. Ingremeau, A. Rivera","doi":"10.5802/jep.181","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a compact manifold $(X,d)$ of negative curvature, and a family of semiclassical Lagrangian states $f_h(x) = a(x) e^{\\frac{i}{h} \\phi(x)}$ on $X$. For a wide family of phases $\\phi$, we show that $f_h$, when evolved by the semiclassical Schr\\\"odinger equation during a long time, resembles a random Gaussian field. This can be seen as an analogue of Berry's random waves conjecture for Lagrangian states.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"How Lagrangian states evolve into random waves\",\"authors\":\"M. Ingremeau, A. Rivera\",\"doi\":\"10.5802/jep.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a compact manifold $(X,d)$ of negative curvature, and a family of semiclassical Lagrangian states $f_h(x) = a(x) e^{\\\\frac{i}{h} \\\\phi(x)}$ on $X$. For a wide family of phases $\\\\phi$, we show that $f_h$, when evolved by the semiclassical Schr\\\\\\\"odinger equation during a long time, resembles a random Gaussian field. This can be seen as an analogue of Berry's random waves conjecture for Lagrangian states.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们考虑一个负曲率的紧流形$(X,d)$和一组半经典拉格朗日态$f_h(x) = a(x) e^{\frac{i}{h} \phi(x)}$在$X$上。对于广泛的相族$\phi$,我们表明$f_h$,当在很长一段时间内由半经典Schrödinger方程演化时,类似于随机高斯场。这可以看作是对拉格朗日状态的贝里随机波猜想的类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Lagrangian states evolve into random waves
In this paper, we consider a compact manifold $(X,d)$ of negative curvature, and a family of semiclassical Lagrangian states $f_h(x) = a(x) e^{\frac{i}{h} \phi(x)}$ on $X$. For a wide family of phases $\phi$, we show that $f_h$, when evolved by the semiclassical Schr\"odinger equation during a long time, resembles a random Gaussian field. This can be seen as an analogue of Berry's random waves conjecture for Lagrangian states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信