{"title":"拉格朗日态如何演变成随机波","authors":"M. Ingremeau, A. Rivera","doi":"10.5802/jep.181","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a compact manifold $(X,d)$ of negative curvature, and a family of semiclassical Lagrangian states $f_h(x) = a(x) e^{\\frac{i}{h} \\phi(x)}$ on $X$. For a wide family of phases $\\phi$, we show that $f_h$, when evolved by the semiclassical Schr\\\"odinger equation during a long time, resembles a random Gaussian field. This can be seen as an analogue of Berry's random waves conjecture for Lagrangian states.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"How Lagrangian states evolve into random waves\",\"authors\":\"M. Ingremeau, A. Rivera\",\"doi\":\"10.5802/jep.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a compact manifold $(X,d)$ of negative curvature, and a family of semiclassical Lagrangian states $f_h(x) = a(x) e^{\\\\frac{i}{h} \\\\phi(x)}$ on $X$. For a wide family of phases $\\\\phi$, we show that $f_h$, when evolved by the semiclassical Schr\\\\\\\"odinger equation during a long time, resembles a random Gaussian field. This can be seen as an analogue of Berry's random waves conjecture for Lagrangian states.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we consider a compact manifold $(X,d)$ of negative curvature, and a family of semiclassical Lagrangian states $f_h(x) = a(x) e^{\frac{i}{h} \phi(x)}$ on $X$. For a wide family of phases $\phi$, we show that $f_h$, when evolved by the semiclassical Schr\"odinger equation during a long time, resembles a random Gaussian field. This can be seen as an analogue of Berry's random waves conjecture for Lagrangian states.