基于神经网络算法的机械臂运动控制研究

Shi Qiongyan, Jianghua Zhang
{"title":"基于神经网络算法的机械臂运动控制研究","authors":"Shi Qiongyan, Jianghua Zhang","doi":"10.1504/ijbm.2020.10027202","DOIUrl":null,"url":null,"abstract":"The manipulator is the new artificial intelligence device, and its motion control is the basis for ensuring the stability of the manipulator's attitude. The traditional manipulator motion control adopts the static neuron control method, which will lead to small disturbance in the attitude control of the manipulator, and cause the stable motion performance of the manipulator. A motion control algorithm for manipulator is proposed based on variable structure fuzzy PID neural network. The coordinate system structure description and manipulator dynamics analysis of the controlled system are carried out. The motion control algorithm of the manipulator is improved by using variable structure PID neural network control and adaptive disturbance suppression method. Combined with the strict feedback control method, the motion error of the manipulator is compensated, and the steady-state error is corrected by the adaptive inertial compensation method to realise the motion control optimisation of the manipulator. The simulation results show that the motion control algorithm of the manipulator has better positioning performance and better control stability, reduces the steady-state error and improves the control stability.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on manipulator motion control based on neural network algorithms\",\"authors\":\"Shi Qiongyan, Jianghua Zhang\",\"doi\":\"10.1504/ijbm.2020.10027202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manipulator is the new artificial intelligence device, and its motion control is the basis for ensuring the stability of the manipulator's attitude. The traditional manipulator motion control adopts the static neuron control method, which will lead to small disturbance in the attitude control of the manipulator, and cause the stable motion performance of the manipulator. A motion control algorithm for manipulator is proposed based on variable structure fuzzy PID neural network. The coordinate system structure description and manipulator dynamics analysis of the controlled system are carried out. The motion control algorithm of the manipulator is improved by using variable structure PID neural network control and adaptive disturbance suppression method. Combined with the strict feedback control method, the motion error of the manipulator is compensated, and the steady-state error is corrected by the adaptive inertial compensation method to realise the motion control optimisation of the manipulator. The simulation results show that the motion control algorithm of the manipulator has better positioning performance and better control stability, reduces the steady-state error and improves the control stability.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijbm.2020.10027202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbm.2020.10027202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机械手是新型的人工智能装置,其运动控制是保证机械手姿态稳定的基础。传统的机械手运动控制采用静态神经元控制方法,会导致机械手姿态控制扰动较小,导致机械手运动性能稳定。提出了一种基于变结构模糊PID神经网络的机械手运动控制算法。对被控系统进行了坐标系结构描述和机械手动力学分析。采用变结构PID神经网络控制和自适应干扰抑制方法对机械手的运动控制算法进行了改进。结合严格反馈控制方法,对机械手的运动误差进行补偿,并采用自适应惯性补偿方法对稳态误差进行校正,实现机械手的运动控制优化。仿真结果表明,该运动控制算法具有更好的定位性能和控制稳定性,减小了稳态误差,提高了控制稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on manipulator motion control based on neural network algorithms
The manipulator is the new artificial intelligence device, and its motion control is the basis for ensuring the stability of the manipulator's attitude. The traditional manipulator motion control adopts the static neuron control method, which will lead to small disturbance in the attitude control of the manipulator, and cause the stable motion performance of the manipulator. A motion control algorithm for manipulator is proposed based on variable structure fuzzy PID neural network. The coordinate system structure description and manipulator dynamics analysis of the controlled system are carried out. The motion control algorithm of the manipulator is improved by using variable structure PID neural network control and adaptive disturbance suppression method. Combined with the strict feedback control method, the motion error of the manipulator is compensated, and the steady-state error is corrected by the adaptive inertial compensation method to realise the motion control optimisation of the manipulator. The simulation results show that the motion control algorithm of the manipulator has better positioning performance and better control stability, reduces the steady-state error and improves the control stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信