{"title":"基于神经网络模型的古代玻璃制品成分分析与鉴定","authors":"Jianing Li, Yunfei Zhu","doi":"10.1109/ICCECE58074.2023.10135338","DOIUrl":null,"url":null,"abstract":"This paper presents a model based on a 3-layer feedforward neural network, which effectively preserves the characteristics of the chemical content of each category in ancient glass through 3 fully connected layers. The average prediction rate of the model was 96.43%, which was 2.43% higher than the traditional KNN classification model, 3.42% higher than the support vector machine (SVM) model and 8.43% higher than the random forest model, demonstrating the efficiency of the model.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition analysis and identification of ancient glass objects based on neural network models\",\"authors\":\"Jianing Li, Yunfei Zhu\",\"doi\":\"10.1109/ICCECE58074.2023.10135338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a model based on a 3-layer feedforward neural network, which effectively preserves the characteristics of the chemical content of each category in ancient glass through 3 fully connected layers. The average prediction rate of the model was 96.43%, which was 2.43% higher than the traditional KNN classification model, 3.42% higher than the support vector machine (SVM) model and 8.43% higher than the random forest model, demonstrating the efficiency of the model.\",\"PeriodicalId\":120030,\"journal\":{\"name\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE58074.2023.10135338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Composition analysis and identification of ancient glass objects based on neural network models
This paper presents a model based on a 3-layer feedforward neural network, which effectively preserves the characteristics of the chemical content of each category in ancient glass through 3 fully connected layers. The average prediction rate of the model was 96.43%, which was 2.43% higher than the traditional KNN classification model, 3.42% higher than the support vector machine (SVM) model and 8.43% higher than the random forest model, demonstrating the efficiency of the model.