{"title":"陶伯利检索理论","authors":"Č. V. Stanojević, Vera B. Stanojević","doi":"10.2298/PIM0271105S","DOIUrl":null,"url":null,"abstract":"Karamata's Hauptsatz [11] and its corollary is the main tool for convergence recovery from Abel's necessary conditions and the control of oscillatory behavior of limiting processes. By modifying the basic discovery from [11], relaxing Abel's necessary conditions and lightening the control of oscillatory behavior an extended Tauberian theory is outlined. This theory goes beyond convergence recovery. It retrieves various kinds of moderate divergence. .","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Tauberian retrieval theory\",\"authors\":\"Č. V. Stanojević, Vera B. Stanojević\",\"doi\":\"10.2298/PIM0271105S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Karamata's Hauptsatz [11] and its corollary is the main tool for convergence recovery from Abel's necessary conditions and the control of oscillatory behavior of limiting processes. By modifying the basic discovery from [11], relaxing Abel's necessary conditions and lightening the control of oscillatory behavior an extended Tauberian theory is outlined. This theory goes beyond convergence recovery. It retrieves various kinds of moderate divergence. .\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM0271105S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0271105S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Karamata's Hauptsatz [11] and its corollary is the main tool for convergence recovery from Abel's necessary conditions and the control of oscillatory behavior of limiting processes. By modifying the basic discovery from [11], relaxing Abel's necessary conditions and lightening the control of oscillatory behavior an extended Tauberian theory is outlined. This theory goes beyond convergence recovery. It retrieves various kinds of moderate divergence. .