在单元格上实现矩阵乘法b

W. Alvaro, J. Kurzak, J. Dongarra
{"title":"在单元格上实现矩阵乘法b","authors":"W. Alvaro, J. Kurzak, J. Dongarra","doi":"10.1201/b10376-3","DOIUrl":null,"url":null,"abstract":"Dense matrix multiplication is one of the most common numerical operations , especially in the area of dense linear algebra, where it forms the core of many important algorithms, including solvers of linear systems of equations , least square problems, and singular and eigenvalue problems. The Cell B. E. excells in its capabilities to process compute-intensive workloads, like matrix multiplication, in single precision, through its powerful SIMD capabilities. This chapter disects implementations of two single precision matrix 3","PeriodicalId":411793,"journal":{"name":"Scientific Computing with Multicore and Accelerators","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementing Matrix Multiplication on the Cell B. E\",\"authors\":\"W. Alvaro, J. Kurzak, J. Dongarra\",\"doi\":\"10.1201/b10376-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense matrix multiplication is one of the most common numerical operations , especially in the area of dense linear algebra, where it forms the core of many important algorithms, including solvers of linear systems of equations , least square problems, and singular and eigenvalue problems. The Cell B. E. excells in its capabilities to process compute-intensive workloads, like matrix multiplication, in single precision, through its powerful SIMD capabilities. This chapter disects implementations of two single precision matrix 3\",\"PeriodicalId\":411793,\"journal\":{\"name\":\"Scientific Computing with Multicore and Accelerators\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Computing with Multicore and Accelerators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/b10376-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Computing with Multicore and Accelerators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/b10376-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

密集矩阵乘法是最常见的数值运算之一,特别是在密集线性代数领域,它构成了许多重要算法的核心,包括线性方程组、最小二乘问题、奇异和特征值问题的求解。Cell b.e.通过其强大的SIMD功能,以单精度处理计算密集型工作负载(如矩阵乘法)的能力非常出色。本章讨论了两个单精度矩阵的实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing Matrix Multiplication on the Cell B. E
Dense matrix multiplication is one of the most common numerical operations , especially in the area of dense linear algebra, where it forms the core of many important algorithms, including solvers of linear systems of equations , least square problems, and singular and eigenvalue problems. The Cell B. E. excells in its capabilities to process compute-intensive workloads, like matrix multiplication, in single precision, through its powerful SIMD capabilities. This chapter disects implementations of two single precision matrix 3
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信