{"title":"车载Ad-Hoc网络周期广播的简单解析模型","authors":"A. Vinel, V. Vishnevsky, Y. Koucheryavy","doi":"10.1109/GLOCOMW.2008.ECP.73","DOIUrl":null,"url":null,"abstract":"Nowadays in Europe, USA, Japan and other countries many efforts are being made towards the development and ubiquitous deployment of active vehicular safety systems, which are based on car-to-car and car-to-infrastructure communications. International standard IEEE 802.11p defines low layers protocols for vehicular networks aimed to support Intelligent Transportation Systems (ITS) applications. Periodic broadcasting of short status messages (beacons) is foreseen as one of the key modes, which should be efficiently handled to provide active safety in vehicular networks. This paper presents a simple analytical method to compute the probability of successful message reception and mean message transmission delay in IEEE 802.11p vehicular ad-hoc network with periodic broadcasting of messages. We investigate the influence of beaconing period on the above performance metrics.","PeriodicalId":410930,"journal":{"name":"2008 IEEE Globecom Workshops","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"A Simple Analytical Model for the Periodic Broadcasting in Vehicular Ad-Hoc Networks\",\"authors\":\"A. Vinel, V. Vishnevsky, Y. Koucheryavy\",\"doi\":\"10.1109/GLOCOMW.2008.ECP.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays in Europe, USA, Japan and other countries many efforts are being made towards the development and ubiquitous deployment of active vehicular safety systems, which are based on car-to-car and car-to-infrastructure communications. International standard IEEE 802.11p defines low layers protocols for vehicular networks aimed to support Intelligent Transportation Systems (ITS) applications. Periodic broadcasting of short status messages (beacons) is foreseen as one of the key modes, which should be efficiently handled to provide active safety in vehicular networks. This paper presents a simple analytical method to compute the probability of successful message reception and mean message transmission delay in IEEE 802.11p vehicular ad-hoc network with periodic broadcasting of messages. We investigate the influence of beaconing period on the above performance metrics.\",\"PeriodicalId\":410930,\"journal\":{\"name\":\"2008 IEEE Globecom Workshops\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Globecom Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2008.ECP.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Globecom Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2008.ECP.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Simple Analytical Model for the Periodic Broadcasting in Vehicular Ad-Hoc Networks
Nowadays in Europe, USA, Japan and other countries many efforts are being made towards the development and ubiquitous deployment of active vehicular safety systems, which are based on car-to-car and car-to-infrastructure communications. International standard IEEE 802.11p defines low layers protocols for vehicular networks aimed to support Intelligent Transportation Systems (ITS) applications. Periodic broadcasting of short status messages (beacons) is foreseen as one of the key modes, which should be efficiently handled to provide active safety in vehicular networks. This paper presents a simple analytical method to compute the probability of successful message reception and mean message transmission delay in IEEE 802.11p vehicular ad-hoc network with periodic broadcasting of messages. We investigate the influence of beaconing period on the above performance metrics.