传统公钥密码体制与椭圆曲线密码体制

Maria Isaura Lopez, Ayad F. Barsoum
{"title":"传统公钥密码体制与椭圆曲线密码体制","authors":"Maria Isaura Lopez, Ayad F. Barsoum","doi":"10.4018/ijcre.309688","DOIUrl":null,"url":null,"abstract":"The need to establish safer communication channels in a world where technological development is progressing in leaps and bounds is indispensable. Thus, implementing cryptographic algorithms, which are more complex to compromise, improves the possibilities of securing our sensitive data. In this paper, the authors analyze the algorithmic foundations and perform a comparative analysis of the traditional public-key cryptographic algorithms (e.g., RSA, ElGamal, Schnorr, DSA) and elliptic curve cryptography with NIST recommended curves. In the study, they focus on six different security strengths: 80-, 96-, 112-, 128-, 192-, and 256-bit key sizes. Moreover, this study provides a benchmark among different curves (NIST, SEC2, and IEFT Brainpool) that can be used with various security levels. The authors study and compare the characteristics and performance of the traditional asymmetric algorithms and the elliptic curve algorithms for information security. The results obtained in this study will be graphically visualized through statistical graphs and tables with quantification response times.","PeriodicalId":324985,"journal":{"name":"International Journal of Cyber Research and Education","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traditional Public-Key Cryptosystems and Elliptic Curve Cryptography\",\"authors\":\"Maria Isaura Lopez, Ayad F. Barsoum\",\"doi\":\"10.4018/ijcre.309688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need to establish safer communication channels in a world where technological development is progressing in leaps and bounds is indispensable. Thus, implementing cryptographic algorithms, which are more complex to compromise, improves the possibilities of securing our sensitive data. In this paper, the authors analyze the algorithmic foundations and perform a comparative analysis of the traditional public-key cryptographic algorithms (e.g., RSA, ElGamal, Schnorr, DSA) and elliptic curve cryptography with NIST recommended curves. In the study, they focus on six different security strengths: 80-, 96-, 112-, 128-, 192-, and 256-bit key sizes. Moreover, this study provides a benchmark among different curves (NIST, SEC2, and IEFT Brainpool) that can be used with various security levels. The authors study and compare the characteristics and performance of the traditional asymmetric algorithms and the elliptic curve algorithms for information security. The results obtained in this study will be graphically visualized through statistical graphs and tables with quantification response times.\",\"PeriodicalId\":324985,\"journal\":{\"name\":\"International Journal of Cyber Research and Education\",\"volume\":\"220 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cyber Research and Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcre.309688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cyber Research and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcre.309688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一个技术发展突飞猛进的世界里,建立更安全的通信渠道是必不可少的。因此,实现更复杂的加密算法,提高了保护敏感数据的可能性。本文分析了算法基础,并对传统的公钥密码算法(如RSA、ElGamal、Schnorr、DSA)和椭圆曲线密码与NIST推荐曲线进行了比较分析。在这项研究中,他们专注于六种不同的安全强度:80位、96位、112位、128位、192位和256位密钥大小。此外,本研究提供了不同曲线(NIST, SEC2和IEFT Brainpool)之间的基准,可用于不同的安全级别。研究并比较了传统的信息安全非对称算法和椭圆曲线算法的特点和性能。本研究所得结果将透过统计图表与量化反应时间,以图形化的方式呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traditional Public-Key Cryptosystems and Elliptic Curve Cryptography
The need to establish safer communication channels in a world where technological development is progressing in leaps and bounds is indispensable. Thus, implementing cryptographic algorithms, which are more complex to compromise, improves the possibilities of securing our sensitive data. In this paper, the authors analyze the algorithmic foundations and perform a comparative analysis of the traditional public-key cryptographic algorithms (e.g., RSA, ElGamal, Schnorr, DSA) and elliptic curve cryptography with NIST recommended curves. In the study, they focus on six different security strengths: 80-, 96-, 112-, 128-, 192-, and 256-bit key sizes. Moreover, this study provides a benchmark among different curves (NIST, SEC2, and IEFT Brainpool) that can be used with various security levels. The authors study and compare the characteristics and performance of the traditional asymmetric algorithms and the elliptic curve algorithms for information security. The results obtained in this study will be graphically visualized through statistical graphs and tables with quantification response times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信