一种高维两级粒子滤波器

Wenbo Wang, P. Mandal
{"title":"一种高维两级粒子滤波器","authors":"Wenbo Wang, P. Mandal","doi":"10.23919/ICIF.2017.8009619","DOIUrl":null,"url":null,"abstract":"Particle Filter (PF) is a popular sequential Monte Carlo method to deal with non-linear non-Gaussian filtering problems. However, it suffers from the so-called curse of dimensionality in the sense that the required number of particle (needed for a reasonable performance) grows exponentially with the dimension of the system. One of the techniques found in the literature to tackle this is to split the high-dimensional state in to several lower dimensional (sub)spaces and run a particle filter on each subspace, the so-called multiple particle filter (MPF). It is also well-known from the literature that a good proposal density can help to improve the performance of a particle filter. In this article, we propose a new particle filter consisting of two stages. The first stage derives a suitable proposal density that incorporates the information from the measurements. In the second stage a PF is employed with the proposal density obtained in the first stage. Through a simulated example we show that in high-dimensional systems, the proposed two-stage particle filter performs better than the MPF with much fewer number of particles.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A two-stage particle filter in high dimension\",\"authors\":\"Wenbo Wang, P. Mandal\",\"doi\":\"10.23919/ICIF.2017.8009619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle Filter (PF) is a popular sequential Monte Carlo method to deal with non-linear non-Gaussian filtering problems. However, it suffers from the so-called curse of dimensionality in the sense that the required number of particle (needed for a reasonable performance) grows exponentially with the dimension of the system. One of the techniques found in the literature to tackle this is to split the high-dimensional state in to several lower dimensional (sub)spaces and run a particle filter on each subspace, the so-called multiple particle filter (MPF). It is also well-known from the literature that a good proposal density can help to improve the performance of a particle filter. In this article, we propose a new particle filter consisting of two stages. The first stage derives a suitable proposal density that incorporates the information from the measurements. In the second stage a PF is employed with the proposal density obtained in the first stage. Through a simulated example we show that in high-dimensional systems, the proposed two-stage particle filter performs better than the MPF with much fewer number of particles.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

粒子滤波(PF)是一种处理非线性非高斯滤波问题的常用序列蒙特卡罗方法。然而,它遭受了所谓的维度诅咒,因为所需的粒子数量(合理性能所需的)随着系统的维度呈指数增长。在文献中发现的解决这个问题的技术之一是将高维状态拆分为几个低维(子)空间,并在每个子空间上运行一个粒子滤波器,即所谓的多粒子滤波器(MPF)。从文献中我们也知道,好的提议密度有助于提高粒子滤波器的性能。在本文中,我们提出了一种由两个阶段组成的新的粒子滤波器。第一阶段提取合适的建议密度,该密度包含来自度量的信息。在第二阶段,利用在第一阶段得到的建议密度来使用PF。仿真结果表明,在高维系统中,所提出的两级粒子滤波器比粒子数少得多的MPF滤波效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-stage particle filter in high dimension
Particle Filter (PF) is a popular sequential Monte Carlo method to deal with non-linear non-Gaussian filtering problems. However, it suffers from the so-called curse of dimensionality in the sense that the required number of particle (needed for a reasonable performance) grows exponentially with the dimension of the system. One of the techniques found in the literature to tackle this is to split the high-dimensional state in to several lower dimensional (sub)spaces and run a particle filter on each subspace, the so-called multiple particle filter (MPF). It is also well-known from the literature that a good proposal density can help to improve the performance of a particle filter. In this article, we propose a new particle filter consisting of two stages. The first stage derives a suitable proposal density that incorporates the information from the measurements. In the second stage a PF is employed with the proposal density obtained in the first stage. Through a simulated example we show that in high-dimensional systems, the proposed two-stage particle filter performs better than the MPF with much fewer number of particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信