{"title":"一种高维两级粒子滤波器","authors":"Wenbo Wang, P. Mandal","doi":"10.23919/ICIF.2017.8009619","DOIUrl":null,"url":null,"abstract":"Particle Filter (PF) is a popular sequential Monte Carlo method to deal with non-linear non-Gaussian filtering problems. However, it suffers from the so-called curse of dimensionality in the sense that the required number of particle (needed for a reasonable performance) grows exponentially with the dimension of the system. One of the techniques found in the literature to tackle this is to split the high-dimensional state in to several lower dimensional (sub)spaces and run a particle filter on each subspace, the so-called multiple particle filter (MPF). It is also well-known from the literature that a good proposal density can help to improve the performance of a particle filter. In this article, we propose a new particle filter consisting of two stages. The first stage derives a suitable proposal density that incorporates the information from the measurements. In the second stage a PF is employed with the proposal density obtained in the first stage. Through a simulated example we show that in high-dimensional systems, the proposed two-stage particle filter performs better than the MPF with much fewer number of particles.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A two-stage particle filter in high dimension\",\"authors\":\"Wenbo Wang, P. Mandal\",\"doi\":\"10.23919/ICIF.2017.8009619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle Filter (PF) is a popular sequential Monte Carlo method to deal with non-linear non-Gaussian filtering problems. However, it suffers from the so-called curse of dimensionality in the sense that the required number of particle (needed for a reasonable performance) grows exponentially with the dimension of the system. One of the techniques found in the literature to tackle this is to split the high-dimensional state in to several lower dimensional (sub)spaces and run a particle filter on each subspace, the so-called multiple particle filter (MPF). It is also well-known from the literature that a good proposal density can help to improve the performance of a particle filter. In this article, we propose a new particle filter consisting of two stages. The first stage derives a suitable proposal density that incorporates the information from the measurements. In the second stage a PF is employed with the proposal density obtained in the first stage. Through a simulated example we show that in high-dimensional systems, the proposed two-stage particle filter performs better than the MPF with much fewer number of particles.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Particle Filter (PF) is a popular sequential Monte Carlo method to deal with non-linear non-Gaussian filtering problems. However, it suffers from the so-called curse of dimensionality in the sense that the required number of particle (needed for a reasonable performance) grows exponentially with the dimension of the system. One of the techniques found in the literature to tackle this is to split the high-dimensional state in to several lower dimensional (sub)spaces and run a particle filter on each subspace, the so-called multiple particle filter (MPF). It is also well-known from the literature that a good proposal density can help to improve the performance of a particle filter. In this article, we propose a new particle filter consisting of two stages. The first stage derives a suitable proposal density that incorporates the information from the measurements. In the second stage a PF is employed with the proposal density obtained in the first stage. Through a simulated example we show that in high-dimensional systems, the proposed two-stage particle filter performs better than the MPF with much fewer number of particles.