类型$(C_1^\vee,C_1)$和伦纳德三元组的通用DAHA

Hau-wen Huang
{"title":"类型$(C_1^\\vee,C_1)$和伦纳德三元组的通用DAHA","authors":"Hau-wen Huang","doi":"10.1080/00927872.2020.1832105","DOIUrl":null,"url":null,"abstract":"Assume that $\\mathbb F$ is an algebraically closed field and $q$ is a nonzero scalar in $\\mathbb F$ that is not a root of unity. The universal Askey--Wilson algebra $\\triangle_q$ is a unital associative $\\mathbb F$-algebra generated by $A,B, C$ and the relations state that each of $$ A+\\frac{q BC-q^{-1} CB}{q^2-q^{-2}}, \\qquad B+\\frac{q CA-q^{-1} AC}{q^2-q^{-2}}, \\qquad C+\\frac{q AB-q^{-1} BA}{q^2-q^{-2}} $$ is central in $\\triangle_q$. The universal DAHA $\\mathfrak H_q$ of type $(C_1^\\vee,C_1)$ is a unital associative $\\mathbb F$-algebra generated by $\\{t_i^{\\pm 1}\\}_{i=0}^3$ and the relations state that \\begin{gather*} t_it_i^{-1}=t_i^{-1} t_i=1 \\quad \\hbox{for all $i=0,1,2,3$}; \\\\ \\hbox{$t_i+t_i^{-1}$ is central} \\quad \\hbox{for all $i=0,1,2,3$}; \\\\ t_0t_1t_2t_3=q^{-1}. \\end{gather*} It was given an $\\mathbb F$-algebra homomorphism $\\triangle_q\\to \\mathfrak H_q$ that sends \\begin{eqnarray*} A &\\mapsto & t_1 t_0+(t_1 t_0)^{-1}, \\\\ B &\\mapsto & t_3 t_0+(t_3 t_0)^{-1}, \\\\ C &\\mapsto & t_2 t_0+(t_2 t_0)^{-1}. \\end{eqnarray*} Therefore any $\\mathfrak H_q$-module can be considered as a $\\triangle_q$-module. Let $V$ denote a finite-dimensional irreducible $\\mathfrak H_q$-module. In this paper we show that $A,B,C$ are diagonalizable on $V$ if and only if $A,B,C$ act as Leonard triples on all composition factors of the $\\triangle_q$-module $V$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The universal DAHA of type $(C_1^\\\\vee,C_1)$ and Leonard triples\",\"authors\":\"Hau-wen Huang\",\"doi\":\"10.1080/00927872.2020.1832105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assume that $\\\\mathbb F$ is an algebraically closed field and $q$ is a nonzero scalar in $\\\\mathbb F$ that is not a root of unity. The universal Askey--Wilson algebra $\\\\triangle_q$ is a unital associative $\\\\mathbb F$-algebra generated by $A,B, C$ and the relations state that each of $$ A+\\\\frac{q BC-q^{-1} CB}{q^2-q^{-2}}, \\\\qquad B+\\\\frac{q CA-q^{-1} AC}{q^2-q^{-2}}, \\\\qquad C+\\\\frac{q AB-q^{-1} BA}{q^2-q^{-2}} $$ is central in $\\\\triangle_q$. The universal DAHA $\\\\mathfrak H_q$ of type $(C_1^\\\\vee,C_1)$ is a unital associative $\\\\mathbb F$-algebra generated by $\\\\{t_i^{\\\\pm 1}\\\\}_{i=0}^3$ and the relations state that \\\\begin{gather*} t_it_i^{-1}=t_i^{-1} t_i=1 \\\\quad \\\\hbox{for all $i=0,1,2,3$}; \\\\\\\\ \\\\hbox{$t_i+t_i^{-1}$ is central} \\\\quad \\\\hbox{for all $i=0,1,2,3$}; \\\\\\\\ t_0t_1t_2t_3=q^{-1}. \\\\end{gather*} It was given an $\\\\mathbb F$-algebra homomorphism $\\\\triangle_q\\\\to \\\\mathfrak H_q$ that sends \\\\begin{eqnarray*} A &\\\\mapsto & t_1 t_0+(t_1 t_0)^{-1}, \\\\\\\\ B &\\\\mapsto & t_3 t_0+(t_3 t_0)^{-1}, \\\\\\\\ C &\\\\mapsto & t_2 t_0+(t_2 t_0)^{-1}. \\\\end{eqnarray*} Therefore any $\\\\mathfrak H_q$-module can be considered as a $\\\\triangle_q$-module. Let $V$ denote a finite-dimensional irreducible $\\\\mathfrak H_q$-module. In this paper we show that $A,B,C$ are diagonalizable on $V$ if and only if $A,B,C$ act as Leonard triples on all composition factors of the $\\\\triangle_q$-module $V$.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00927872.2020.1832105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00927872.2020.1832105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

假设 $\mathbb F$ 代数闭场是和吗 $q$ 一个非零的标量在里面吗 $\mathbb F$ 这不是团结的根源。通用的Askey- Wilson代数 $\triangle_q$ 是单位结合律吗 $\mathbb F$-代数由 $A,B, C$ 关系式表明每一个 $$ A+\frac{q BC-q^{-1} CB}{q^2-q^{-2}}, \qquad B+\frac{q CA-q^{-1} AC}{q^2-q^{-2}}, \qquad C+\frac{q AB-q^{-1} BA}{q^2-q^{-2}} $$ 是市中心 $\triangle_q$. 普遍的DAHA $\mathfrak H_q$ 类型 $(C_1^\vee,C_1)$ 是单位结合律吗 $\mathbb F$-代数由 $\{t_i^{\pm 1}\}_{i=0}^3$ 关系式表明 \begin{gather*} t_it_i^{-1}=t_i^{-1} t_i=1 \quad \hbox{for all $i=0,1,2,3$}; \\ \hbox{$t_i+t_i^{-1}$ is central} \quad \hbox{for all $i=0,1,2,3$}; \\ t_0t_1t_2t_3=q^{-1}. \end{gather*} 它被赋予了 $\mathbb F$-代数同态 $\triangle_q\to \mathfrak H_q$ 这就把 \begin{eqnarray*} A &\mapsto & t_1 t_0+(t_1 t_0)^{-1}, \\ B &\mapsto & t_3 t_0+(t_3 t_0)^{-1}, \\ C &\mapsto & t_2 t_0+(t_2 t_0)^{-1}. \end{eqnarray*} 因此任何 $\mathfrak H_q$-module可以看作是 $\triangle_q$-module。让 $V$ 表示有限维不可约 $\mathfrak H_q$-module。在本文中,我们证明了这一点 $A,B,C$ 是对角化的吗 $V$ 当且仅当 $A,B,C$ 作为伦纳德三倍的所有组成因子 $\triangle_q$-模块 $V$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The universal DAHA of type $(C_1^\vee,C_1)$ and Leonard triples
Assume that $\mathbb F$ is an algebraically closed field and $q$ is a nonzero scalar in $\mathbb F$ that is not a root of unity. The universal Askey--Wilson algebra $\triangle_q$ is a unital associative $\mathbb F$-algebra generated by $A,B, C$ and the relations state that each of $$ A+\frac{q BC-q^{-1} CB}{q^2-q^{-2}}, \qquad B+\frac{q CA-q^{-1} AC}{q^2-q^{-2}}, \qquad C+\frac{q AB-q^{-1} BA}{q^2-q^{-2}} $$ is central in $\triangle_q$. The universal DAHA $\mathfrak H_q$ of type $(C_1^\vee,C_1)$ is a unital associative $\mathbb F$-algebra generated by $\{t_i^{\pm 1}\}_{i=0}^3$ and the relations state that \begin{gather*} t_it_i^{-1}=t_i^{-1} t_i=1 \quad \hbox{for all $i=0,1,2,3$}; \\ \hbox{$t_i+t_i^{-1}$ is central} \quad \hbox{for all $i=0,1,2,3$}; \\ t_0t_1t_2t_3=q^{-1}. \end{gather*} It was given an $\mathbb F$-algebra homomorphism $\triangle_q\to \mathfrak H_q$ that sends \begin{eqnarray*} A &\mapsto & t_1 t_0+(t_1 t_0)^{-1}, \\ B &\mapsto & t_3 t_0+(t_3 t_0)^{-1}, \\ C &\mapsto & t_2 t_0+(t_2 t_0)^{-1}. \end{eqnarray*} Therefore any $\mathfrak H_q$-module can be considered as a $\triangle_q$-module. Let $V$ denote a finite-dimensional irreducible $\mathfrak H_q$-module. In this paper we show that $A,B,C$ are diagonalizable on $V$ if and only if $A,B,C$ act as Leonard triples on all composition factors of the $\triangle_q$-module $V$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信