基于相似性的ADHD奇异值分解分类

Taban Eslami, F. Saeed
{"title":"基于相似性的ADHD奇异值分解分类","authors":"Taban Eslami, F. Saeed","doi":"10.1145/3203217.3203239","DOIUrl":null,"url":null,"abstract":"Attention deficit hyperactivity disorder (ADHD) is one of the most common brain disorders among children. This disorder is considered as a big threat for public health and causes attention, focus and organizing difficulties for children and even adults. Since the cause of ADHD is not known yet, data mining algorithms are being used to help discover patterns which discriminate healthy from ADHD subjects. Numerous efforts are underway with the goal of developing classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging data of the brain. In this paper, we used Eros, which is a technique for computing similarity between two multivariate time series along with k-Nearest-Neighbor classifier, to classify healthy vs ADHD children. We designed a model selection scheme called J-Eros which is able to pick the optimum value of k for k-Nearest-Neighbor from the training data. We applied this technique to the public data provided by ADHD-200 Consortium competition and our results show that J-Eros is capable of discriminating healthy from ADHD children such that we outperformed the best results reported by ADHD-200 competition about 20 percent for two datasets. The implemented code is available as GPL license on GitHub portal of our lab at https://github.com/pcdslab/J-Eros.","PeriodicalId":127096,"journal":{"name":"Proceedings of the 15th ACM International Conference on Computing Frontiers","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Similarity based classification of ADHD using singular value decomposition\",\"authors\":\"Taban Eslami, F. Saeed\",\"doi\":\"10.1145/3203217.3203239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention deficit hyperactivity disorder (ADHD) is one of the most common brain disorders among children. This disorder is considered as a big threat for public health and causes attention, focus and organizing difficulties for children and even adults. Since the cause of ADHD is not known yet, data mining algorithms are being used to help discover patterns which discriminate healthy from ADHD subjects. Numerous efforts are underway with the goal of developing classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging data of the brain. In this paper, we used Eros, which is a technique for computing similarity between two multivariate time series along with k-Nearest-Neighbor classifier, to classify healthy vs ADHD children. We designed a model selection scheme called J-Eros which is able to pick the optimum value of k for k-Nearest-Neighbor from the training data. We applied this technique to the public data provided by ADHD-200 Consortium competition and our results show that J-Eros is capable of discriminating healthy from ADHD children such that we outperformed the best results reported by ADHD-200 competition about 20 percent for two datasets. The implemented code is available as GPL license on GitHub portal of our lab at https://github.com/pcdslab/J-Eros.\",\"PeriodicalId\":127096,\"journal\":{\"name\":\"Proceedings of the 15th ACM International Conference on Computing Frontiers\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3203217.3203239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3203217.3203239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

注意缺陷多动障碍(ADHD)是儿童中最常见的脑部疾病之一。这种疾病被认为是对公共卫生的一大威胁,给儿童甚至成人造成注意力、集中和组织方面的困难。由于ADHD的病因尚不清楚,数据挖掘算法被用来帮助发现区分健康和ADHD受试者的模式。基于大脑的功能和结构磁共振成像数据,人们正在努力开发ADHD诊断的分类工具。在本文中,我们使用Eros,这是一种计算两个多元时间序列之间相似度的技术,与k-最近邻分类器一起,对健康儿童和ADHD儿童进行分类。我们设计了一个模型选择方案J-Eros,它能够从训练数据中选择k的最优值。我们将该技术应用于ADHD-200联盟竞赛提供的公共数据,结果表明J-Eros能够区分健康儿童和ADHD儿童,因此我们在两个数据集上的表现比ADHD-200竞赛报告的最佳结果高出约20%。实现的代码可以在我们实验室的GitHub门户网站https://github.com/pcdslab/J-Eros上获得GPL许可。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity based classification of ADHD using singular value decomposition
Attention deficit hyperactivity disorder (ADHD) is one of the most common brain disorders among children. This disorder is considered as a big threat for public health and causes attention, focus and organizing difficulties for children and even adults. Since the cause of ADHD is not known yet, data mining algorithms are being used to help discover patterns which discriminate healthy from ADHD subjects. Numerous efforts are underway with the goal of developing classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging data of the brain. In this paper, we used Eros, which is a technique for computing similarity between two multivariate time series along with k-Nearest-Neighbor classifier, to classify healthy vs ADHD children. We designed a model selection scheme called J-Eros which is able to pick the optimum value of k for k-Nearest-Neighbor from the training data. We applied this technique to the public data provided by ADHD-200 Consortium competition and our results show that J-Eros is capable of discriminating healthy from ADHD children such that we outperformed the best results reported by ADHD-200 competition about 20 percent for two datasets. The implemented code is available as GPL license on GitHub portal of our lab at https://github.com/pcdslab/J-Eros.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信