幸运数字和无三角形外平面图

Maycon Sambinelli, Fabíola Santos Carvalho de Souza
{"title":"幸运数字和无三角形外平面图","authors":"Maycon Sambinelli, Fabíola Santos Carvalho de Souza","doi":"10.5753/etc.2023.229860","DOIUrl":null,"url":null,"abstract":"Uma coloração aditiva de um grafo G = (V,E) é uma função c : V → {1, 2, . . . , k} tal que, para toda aresta uv ∈ E, temos que Sc(u) ≠ Sc(v), onde Sc(u) = ∑v∈NG(u) c(v). O número da sorte de um grafo G, denotado por η(G), é definido como o menor valor de k tal que c seja uma coloração aditiva. Neste trabalho, provamos que se G é um grafo exoplanar livre de triângulos, então η(G) ≤ 6. Ademais, determinamos o número da sorte para os Snarks de Loupekine.","PeriodicalId":165974,"journal":{"name":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Número da sorte e grafos exoplanares livres de triângulos\",\"authors\":\"Maycon Sambinelli, Fabíola Santos Carvalho de Souza\",\"doi\":\"10.5753/etc.2023.229860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uma coloração aditiva de um grafo G = (V,E) é uma função c : V → {1, 2, . . . , k} tal que, para toda aresta uv ∈ E, temos que Sc(u) ≠ Sc(v), onde Sc(u) = ∑v∈NG(u) c(v). O número da sorte de um grafo G, denotado por η(G), é definido como o menor valor de k tal que c seja uma coloração aditiva. Neste trabalho, provamos que se G é um grafo exoplanar livre de triângulos, então η(G) ≤ 6. Ademais, determinamos o número da sorte para os Snarks de Loupekine.\",\"PeriodicalId\":165974,\"journal\":{\"name\":\"Anais do VIII Encontro de Teoria da Computação (ETC 2023)\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do VIII Encontro de Teoria da Computação (ETC 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/etc.2023.229860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2023.229860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图G = (V,E)的加性着色是函数c: V→{1,2,…对于每条边uv∈E,我们有Sc(u)≠Sc(v),其中Sc(u) =∑v∈NG(u) c(v)。幸运的是,他的父亲在他很小的时候就去世了,他的父亲在他很小的时候就去世了,他的母亲在他很小的时候就去世了。本文证明了如果G是一个无三角形外平面图,则η(G)≤6。此外,我们还确定了Loupekine Snarks的幸运数字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Número da sorte e grafos exoplanares livres de triângulos
Uma coloração aditiva de um grafo G = (V,E) é uma função c : V → {1, 2, . . . , k} tal que, para toda aresta uv ∈ E, temos que Sc(u) ≠ Sc(v), onde Sc(u) = ∑v∈NG(u) c(v). O número da sorte de um grafo G, denotado por η(G), é definido como o menor valor de k tal que c seja uma coloração aditiva. Neste trabalho, provamos que se G é um grafo exoplanar livre de triângulos, então η(G) ≤ 6. Ademais, determinamos o número da sorte para os Snarks de Loupekine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信