用户生成视频产品评论的时间情感检测

M. Barakat, C. Ritz, D. Stirling
{"title":"用户生成视频产品评论的时间情感检测","authors":"M. Barakat, C. Ritz, D. Stirling","doi":"10.1109/ISCIT.2013.6645925","DOIUrl":null,"url":null,"abstract":"User generated video product reviews in social media gaining popularity every day due to its creditability and the broad evaluation context provided by it. Extracting sentiment automatically from such videos will help the consumers making decisions and producers improving their products. This paper investigates the feasibility of sentiment detection temporally from those videos by analyzing the transcription generated by a speech recognition system which was not investigated before. Another two main contribution for this paper is introducing a solution to the problem of fixed threshold estimation for the Naïve Bayesian classifier output probabilities and irrelative text filtering for improving the sentiment classification. Various experiments indicated the proposed system can achieve an F-score of 0.66 which is promising knowing that the sentiment classifier offers an F-score of 0.78 provided that the input text is error free.","PeriodicalId":356009,"journal":{"name":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Temporal sentiment detection for user generated video product reviews\",\"authors\":\"M. Barakat, C. Ritz, D. Stirling\",\"doi\":\"10.1109/ISCIT.2013.6645925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User generated video product reviews in social media gaining popularity every day due to its creditability and the broad evaluation context provided by it. Extracting sentiment automatically from such videos will help the consumers making decisions and producers improving their products. This paper investigates the feasibility of sentiment detection temporally from those videos by analyzing the transcription generated by a speech recognition system which was not investigated before. Another two main contribution for this paper is introducing a solution to the problem of fixed threshold estimation for the Naïve Bayesian classifier output probabilities and irrelative text filtering for improving the sentiment classification. Various experiments indicated the proposed system can achieve an F-score of 0.66 which is promising knowing that the sentiment classifier offers an F-score of 0.78 provided that the input text is error free.\",\"PeriodicalId\":356009,\"journal\":{\"name\":\"2013 13th International Symposium on Communications and Information Technologies (ISCIT)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th International Symposium on Communications and Information Technologies (ISCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCIT.2013.6645925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2013.6645925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社交媒体上用户生成的视频产品评论由于其可信度和提供的广泛评价背景,每天都在受到欢迎。从这些视频中自动提取情感将有助于消费者做出决定,也有助于生产商改进产品。本文通过分析语音识别系统生成的转录片段,探讨了从这些视频中临时检测情感的可行性。本文的另外两个主要贡献是引入了解决Naïve贝叶斯分类器输出概率的固定阈值估计问题和用于改进情感分类的不相关文本过滤。各种实验表明,所提出的系统可以达到0.66的f分,这是有希望的,因为情感分类器提供0.78的f分,前提是输入文本没有错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal sentiment detection for user generated video product reviews
User generated video product reviews in social media gaining popularity every day due to its creditability and the broad evaluation context provided by it. Extracting sentiment automatically from such videos will help the consumers making decisions and producers improving their products. This paper investigates the feasibility of sentiment detection temporally from those videos by analyzing the transcription generated by a speech recognition system which was not investigated before. Another two main contribution for this paper is introducing a solution to the problem of fixed threshold estimation for the Naïve Bayesian classifier output probabilities and irrelative text filtering for improving the sentiment classification. Various experiments indicated the proposed system can achieve an F-score of 0.66 which is promising knowing that the sentiment classifier offers an F-score of 0.78 provided that the input text is error free.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信