基于强化学习的数字格斗游戏自主代理的开发

J. R. Bezerra, L. F. Góes, Alysson Ribeiro Da Silva
{"title":"基于强化学习的数字格斗游戏自主代理的开发","authors":"J. R. Bezerra, L. F. Góes, Alysson Ribeiro Da Silva","doi":"10.1109/SBGames51465.2020.00017","DOIUrl":null,"url":null,"abstract":"In this work, an autonomous agent based on reinforcement learning is implemented in a digital fighting game. The implemented agent uses Fusion Architecture for Learning, COgnition, and Navigation (FALCON) and Associative Resonance Map (ARAM) neural networks. The experimental results show that the autonomous agent is able to develop game strategies using the experience acquired in the matches, and achieves a winning rate of up to 90% against an agent with fixed behavior.","PeriodicalId":335816,"journal":{"name":"2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of an Autonomous Agent based on Reinforcement Learning for a Digital Fighting Game\",\"authors\":\"J. R. Bezerra, L. F. Góes, Alysson Ribeiro Da Silva\",\"doi\":\"10.1109/SBGames51465.2020.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an autonomous agent based on reinforcement learning is implemented in a digital fighting game. The implemented agent uses Fusion Architecture for Learning, COgnition, and Navigation (FALCON) and Associative Resonance Map (ARAM) neural networks. The experimental results show that the autonomous agent is able to develop game strategies using the experience acquired in the matches, and achieves a winning rate of up to 90% against an agent with fixed behavior.\",\"PeriodicalId\":335816,\"journal\":{\"name\":\"2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBGames51465.2020.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBGames51465.2020.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,基于强化学习的自主智能体在数字格斗游戏中实现。实现的智能体使用学习、认知和导航的融合架构(FALCON)和关联共振图(ARAM)神经网络。实验结果表明,自主智能体能够利用在比赛中获得的经验制定博弈策略,并在与固定行为的智能体的对抗中取得高达90%的胜率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an Autonomous Agent based on Reinforcement Learning for a Digital Fighting Game
In this work, an autonomous agent based on reinforcement learning is implemented in a digital fighting game. The implemented agent uses Fusion Architecture for Learning, COgnition, and Navigation (FALCON) and Associative Resonance Map (ARAM) neural networks. The experimental results show that the autonomous agent is able to develop game strategies using the experience acquired in the matches, and achieves a winning rate of up to 90% against an agent with fixed behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信