由超循环算子逼近的算子

J. Boland
{"title":"由超循环算子逼近的算子","authors":"J. Boland","doi":"10.3318/PRIA.2015.115.08","DOIUrl":null,"url":null,"abstract":"We show that operators on a separable infinite dimensional Banach space $X$ of the form $I +S$, where $S$ is an operator with dense generalised kernel, must lie in the norm closure of the hypercyclic operators on $X$, in fact in the closure of the mixing operators.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operators Approximable by Hypercyclic Operators\",\"authors\":\"J. Boland\",\"doi\":\"10.3318/PRIA.2015.115.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that operators on a separable infinite dimensional Banach space $X$ of the form $I +S$, where $S$ is an operator with dense generalised kernel, must lie in the norm closure of the hypercyclic operators on $X$, in fact in the closure of the mixing operators.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2015.115.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2015.115.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了可分离无限维Banach空间$X$上的算子,其形式为$I +S$,其中$S$是一个具有密集广义核的算子,它必须位于$X$上的超循环算子的范数闭包中,实际上是位于混合算子的闭包中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operators Approximable by Hypercyclic Operators
We show that operators on a separable infinite dimensional Banach space $X$ of the form $I +S$, where $S$ is an operator with dense generalised kernel, must lie in the norm closure of the hypercyclic operators on $X$, in fact in the closure of the mixing operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信