Weizsäecker配方的神经形态改进

M. Dima
{"title":"Weizsäecker配方的神经形态改进","authors":"M. Dima","doi":"10.22323/1.429.0029","DOIUrl":null,"url":null,"abstract":"Yearly, nuclide mass data is fitted to improved versions of the Bethe-Weizsäecker formula. The present attempt at furthering the precision of this endeavor aims to reach beyond just precision, and obtain predictive capability about the \"Stability Island\" of nuclides. The method is to perform a fit to a recent improved liquid drop model with isotonic shift. The residuals are then fed to a neural network, with a number of \"feature\" quantities. The results are then discussed in view of their perspective to predict the \"Stability Island\".","PeriodicalId":262901,"journal":{"name":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromorphic improvement of the Weizsäecker formula\",\"authors\":\"M. Dima\",\"doi\":\"10.22323/1.429.0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yearly, nuclide mass data is fitted to improved versions of the Bethe-Weizsäecker formula. The present attempt at furthering the precision of this endeavor aims to reach beyond just precision, and obtain predictive capability about the \\\"Stability Island\\\" of nuclides. The method is to perform a fit to a recent improved liquid drop model with isotonic shift. The residuals are then fed to a neural network, with a number of \\\"feature\\\" quantities. The results are then discussed in view of their perspective to predict the \\\"Stability Island\\\".\",\"PeriodicalId\":262901,\"journal\":{\"name\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.429.0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.429.0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每年,核素质量的数据都要符合Bethe-Weizsäecker公式的改进版本。目前进一步提高这一努力的精度的尝试旨在超越精度,并获得对核素“稳定岛”的预测能力。该方法是对最近改进的具有等渗位移的液滴模型进行拟合。然后将残差与一些“特征”量一起输入神经网络。然后从预测“稳定岛”的角度对结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuromorphic improvement of the Weizsäecker formula
Yearly, nuclide mass data is fitted to improved versions of the Bethe-Weizsäecker formula. The present attempt at furthering the precision of this endeavor aims to reach beyond just precision, and obtain predictive capability about the "Stability Island" of nuclides. The method is to perform a fit to a recent improved liquid drop model with isotonic shift. The residuals are then fed to a neural network, with a number of "feature" quantities. The results are then discussed in view of their perspective to predict the "Stability Island".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信