基于数据驱动方法的配电网拓扑标定

M. Subasic, G. D. Ave, M. Giuntoli, P. Noglik, K. Knezović, Dmitry Shchetinin, W. Peterson, Wenping Li
{"title":"基于数据驱动方法的配电网拓扑标定","authors":"M. Subasic, G. D. Ave, M. Giuntoli, P. Noglik, K. Knezović, Dmitry Shchetinin, W. Peterson, Wenping Li","doi":"10.1109/ISGT-Europe54678.2022.9960588","DOIUrl":null,"url":null,"abstract":"With the introduction of advanced metering infrastructure and smart meters at the customers' premises, an unprecedented amount of data becomes available to improve and validate distribution grid models. Therefore, assuming there are distribution grid topological errors, data-driven methods can utilize smart meter data to remedy the real-time topology in which the grid is currently operated and correct the topology errors stored in the database of the distribution management system. In this work, a hybrid methodology, encompassing graph theory and data-driven approaches based on statistical inference, is used to identify the errors in the underlying operational grid topology models. The methodology relies on voltage magnitude timeseries data, which are easily obtained from smart meters.","PeriodicalId":311595,"journal":{"name":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distribution Grid Topology Calibration Based on a Data-Driven Approach\",\"authors\":\"M. Subasic, G. D. Ave, M. Giuntoli, P. Noglik, K. Knezović, Dmitry Shchetinin, W. Peterson, Wenping Li\",\"doi\":\"10.1109/ISGT-Europe54678.2022.9960588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the introduction of advanced metering infrastructure and smart meters at the customers' premises, an unprecedented amount of data becomes available to improve and validate distribution grid models. Therefore, assuming there are distribution grid topological errors, data-driven methods can utilize smart meter data to remedy the real-time topology in which the grid is currently operated and correct the topology errors stored in the database of the distribution management system. In this work, a hybrid methodology, encompassing graph theory and data-driven approaches based on statistical inference, is used to identify the errors in the underlying operational grid topology models. The methodology relies on voltage magnitude timeseries data, which are easily obtained from smart meters.\",\"PeriodicalId\":311595,\"journal\":{\"name\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-Europe54678.2022.9960588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Europe54678.2022.9960588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着先进的计量基础设施和智能电表在客户场所的引入,前所未有的数据量可以用于改进和验证配电网模型。因此,假设存在配电网拓扑错误,数据驱动方法可以利用智能电表数据对电网当前运行的实时拓扑进行修正,并对存储在配电管理系统数据库中的拓扑错误进行修正。在这项工作中,一种混合方法,包括图论和基于统计推断的数据驱动方法,用于识别底层操作网格拓扑模型中的错误。该方法依赖于电压幅值时间序列数据,这些数据很容易从智能电表中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution Grid Topology Calibration Based on a Data-Driven Approach
With the introduction of advanced metering infrastructure and smart meters at the customers' premises, an unprecedented amount of data becomes available to improve and validate distribution grid models. Therefore, assuming there are distribution grid topological errors, data-driven methods can utilize smart meter data to remedy the real-time topology in which the grid is currently operated and correct the topology errors stored in the database of the distribution management system. In this work, a hybrid methodology, encompassing graph theory and data-driven approaches based on statistical inference, is used to identify the errors in the underlying operational grid topology models. The methodology relies on voltage magnitude timeseries data, which are easily obtained from smart meters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信