D. Christopher, Tsegaye Alemayehu Atiso, Mebratu Markos
{"title":"Al2O3和CuO纳米流体增强矩形管道传热的数值研究","authors":"D. Christopher, Tsegaye Alemayehu Atiso, Mebratu Markos","doi":"10.51983/arme-2020.9.2.2481","DOIUrl":null,"url":null,"abstract":"A numerical investigation was conducted to predict the greater thermal enhancement in the rectangular duct using different nanofluids – Aluminum oxide (Al2 O3) and Copper oxide (CuO) are employed in the investigation and magnitude are compared with base fluid to ascertain the augmentation of thermal efficiency. Ansys-Fluent 13 used for simulation to identify the augmentation of heat transfer among fluids. A simulation conducted in Laminar flow with Reynolds number (Re) ranges from 20 to 40 at constant heat flux 2000 W/m2. The research reported the contour of temperature distribution, pressure variation, and magnitude velocity, Result reveals that copper oxide nanofluids have produced significant thermal performances than other nanofluid particles.","PeriodicalId":340179,"journal":{"name":"Asian Review of Mechanical Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation in Augmentation of Heat Transfer in a Rectangular Duct Using Al2O3 and CuO Nanofluids\",\"authors\":\"D. Christopher, Tsegaye Alemayehu Atiso, Mebratu Markos\",\"doi\":\"10.51983/arme-2020.9.2.2481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical investigation was conducted to predict the greater thermal enhancement in the rectangular duct using different nanofluids – Aluminum oxide (Al2 O3) and Copper oxide (CuO) are employed in the investigation and magnitude are compared with base fluid to ascertain the augmentation of thermal efficiency. Ansys-Fluent 13 used for simulation to identify the augmentation of heat transfer among fluids. A simulation conducted in Laminar flow with Reynolds number (Re) ranges from 20 to 40 at constant heat flux 2000 W/m2. The research reported the contour of temperature distribution, pressure variation, and magnitude velocity, Result reveals that copper oxide nanofluids have produced significant thermal performances than other nanofluid particles.\",\"PeriodicalId\":340179,\"journal\":{\"name\":\"Asian Review of Mechanical Engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Review of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51983/arme-2020.9.2.2481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Review of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/arme-2020.9.2.2481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Investigation in Augmentation of Heat Transfer in a Rectangular Duct Using Al2O3 and CuO Nanofluids
A numerical investigation was conducted to predict the greater thermal enhancement in the rectangular duct using different nanofluids – Aluminum oxide (Al2 O3) and Copper oxide (CuO) are employed in the investigation and magnitude are compared with base fluid to ascertain the augmentation of thermal efficiency. Ansys-Fluent 13 used for simulation to identify the augmentation of heat transfer among fluids. A simulation conducted in Laminar flow with Reynolds number (Re) ranges from 20 to 40 at constant heat flux 2000 W/m2. The research reported the contour of temperature distribution, pressure variation, and magnitude velocity, Result reveals that copper oxide nanofluids have produced significant thermal performances than other nanofluid particles.