Andreas Trier Poulsen, Simon Kamronn, L. Parra, L. K. Hansen
{"title":"联合脑电激活的贝叶斯相关分量分析","authors":"Andreas Trier Poulsen, Simon Kamronn, L. Parra, L. K. Hansen","doi":"10.1109/PRNI.2014.6858539","DOIUrl":null,"url":null,"abstract":"We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian correlated component analysis for inference of joint EEG activation\",\"authors\":\"Andreas Trier Poulsen, Simon Kamronn, L. Parra, L. K. Hansen\",\"doi\":\"10.1109/PRNI.2014.6858539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset.\",\"PeriodicalId\":133286,\"journal\":{\"name\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2014.6858539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian correlated component analysis for inference of joint EEG activation
We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset.