成人人形机器人的同步双臂操纵

Hanjaya Mandala, Saeed Saeedvand, J. Baltes
{"title":"成人人形机器人的同步双臂操纵","authors":"Hanjaya Mandala, Saeed Saeedvand, J. Baltes","doi":"10.1109/ARIS50834.2020.9205783","DOIUrl":null,"url":null,"abstract":"This paper introduces a synchronous dual-arm manipulation with obstacle avoidance trajectory planning by an adult-size humanoid robot. In this regard, we propose a high precision 3D object coordinate tracking using LiDAR point cloud data and adopting Gaussian distribution into robot manipulation trajectory planning. We derived our 3D object detection into three methods included auto K-means clustering, deep learning object classification, and convex hull localization. Therefore, a lightweight 3D object classification based on a convolutional neural network (CNN) has been proposed that reached 91% accuracy with 0.34ms inference time on CPU. In empirical experiments, the Gaussian manipulation trajectory planning is applied adult-sized dual-arm robot, which shows efficient object placement with obstacle avoidance.","PeriodicalId":423389,"journal":{"name":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synchronous Dual-Arm Manipulation by Adult-Sized Humanoid Robot\",\"authors\":\"Hanjaya Mandala, Saeed Saeedvand, J. Baltes\",\"doi\":\"10.1109/ARIS50834.2020.9205783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a synchronous dual-arm manipulation with obstacle avoidance trajectory planning by an adult-size humanoid robot. In this regard, we propose a high precision 3D object coordinate tracking using LiDAR point cloud data and adopting Gaussian distribution into robot manipulation trajectory planning. We derived our 3D object detection into three methods included auto K-means clustering, deep learning object classification, and convex hull localization. Therefore, a lightweight 3D object classification based on a convolutional neural network (CNN) has been proposed that reached 91% accuracy with 0.34ms inference time on CPU. In empirical experiments, the Gaussian manipulation trajectory planning is applied adult-sized dual-arm robot, which shows efficient object placement with obstacle avoidance.\",\"PeriodicalId\":423389,\"journal\":{\"name\":\"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARIS50834.2020.9205783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARIS50834.2020.9205783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种成人人形机器人双臂同步避障轨迹规划方法。为此,我们提出了利用LiDAR点云数据进行高精度三维目标坐标跟踪,并将高斯分布引入机器人操作轨迹规划中。我们将3D目标检测分为三种方法:自动k均值聚类、深度学习目标分类和凸包定位。因此,本文提出了一种基于卷积神经网络(CNN)的轻量级3D物体分类方法,该方法在CPU上的推理时间为0.34ms,准确率达到91%。在实证实验中,将高斯操纵轨迹规划应用于成人双臂机器人,显示出有效的避障目标放置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronous Dual-Arm Manipulation by Adult-Sized Humanoid Robot
This paper introduces a synchronous dual-arm manipulation with obstacle avoidance trajectory planning by an adult-size humanoid robot. In this regard, we propose a high precision 3D object coordinate tracking using LiDAR point cloud data and adopting Gaussian distribution into robot manipulation trajectory planning. We derived our 3D object detection into three methods included auto K-means clustering, deep learning object classification, and convex hull localization. Therefore, a lightweight 3D object classification based on a convolutional neural network (CNN) has been proposed that reached 91% accuracy with 0.34ms inference time on CPU. In empirical experiments, the Gaussian manipulation trajectory planning is applied adult-sized dual-arm robot, which shows efficient object placement with obstacle avoidance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信