{"title":"基于contourlet的图像压缩图切率失真算法","authors":"M. Trocan, B. Pesquet-Popescu, J. Fowler","doi":"10.1109/ICIP.2007.4379273","DOIUrl":null,"url":null,"abstract":"The geometric features of images, such as edges, are difficult to represent. When a redundant transform is used for their extraction, the compression challenge is even more difficult. In this paper we present a new rate-distortion optimization algorithm based on graph theory that can encode efficiently the coefficients of a critically sampled, non-orthogonal or even redundant transform, like the contourlet decomposition. The basic idea is to construct a specialized graph such that its minimum cut minimizes the energy functional. We propose to apply this technique for rate-distortion Lagrangian optimization in subband image coding. The method yields good compression results compared to the state-of-art JPEG2000 codec, as well as a general improvement in visual quality.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Graph-Cut Rate Distortion Algorithm for Contourlet-Based Image Compression\",\"authors\":\"M. Trocan, B. Pesquet-Popescu, J. Fowler\",\"doi\":\"10.1109/ICIP.2007.4379273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometric features of images, such as edges, are difficult to represent. When a redundant transform is used for their extraction, the compression challenge is even more difficult. In this paper we present a new rate-distortion optimization algorithm based on graph theory that can encode efficiently the coefficients of a critically sampled, non-orthogonal or even redundant transform, like the contourlet decomposition. The basic idea is to construct a specialized graph such that its minimum cut minimizes the energy functional. We propose to apply this technique for rate-distortion Lagrangian optimization in subband image coding. The method yields good compression results compared to the state-of-art JPEG2000 codec, as well as a general improvement in visual quality.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph-Cut Rate Distortion Algorithm for Contourlet-Based Image Compression
The geometric features of images, such as edges, are difficult to represent. When a redundant transform is used for their extraction, the compression challenge is even more difficult. In this paper we present a new rate-distortion optimization algorithm based on graph theory that can encode efficiently the coefficients of a critically sampled, non-orthogonal or even redundant transform, like the contourlet decomposition. The basic idea is to construct a specialized graph such that its minimum cut minimizes the energy functional. We propose to apply this technique for rate-distortion Lagrangian optimization in subband image coding. The method yields good compression results compared to the state-of-art JPEG2000 codec, as well as a general improvement in visual quality.