i-vector/PLDA扬声器验证的总变异性矩阵归一化

Wei Rao, M. Mak, Kong-Aik Lee
{"title":"i-vector/PLDA扬声器验证的总变异性矩阵归一化","authors":"Wei Rao, M. Mak, Kong-Aik Lee","doi":"10.1109/ICASSP.2015.7178758","DOIUrl":null,"url":null,"abstract":"Gaussian PLDA with uncertainty propagation is effective for i-vector based speaker verification. The idea is to propagate the uncertainty of i-vectors caused by the duration variability of utterances to the PLDA model. However, a limitation of the method is the difficulty of performing length normalization on the posterior covariance matrix of an i-vector. This paper proposes a method to avoid performing length normalization on i-vectors in Gaussian PLDA modeling so that uncertainty propagation can be directly applied without transforming the posterior covariance matrices of i-vectors. Instead of performing length normalization on i-vectors independently, the proposed method normalizes the column vectors of the total variability matrix. Because the i-vectors of all utterances are derived from the same normalized total variability matrix, they will be subject to the same degree of normalization, thereby avoiding the undesirable distortion introduced by the utterance-dependent length-normalization process. Experimental results on both NIST 2010 and 2012 SREs demonstrate that the proposed method achieves a performance similar to (and in some situations better than) that of Gaussian PLDA with length normalization. The method has the potential of improving the performance of uncertainty propagation for i-vector/PLDA speaker verification.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Normalization of total variability matrix for i-vector/PLDA speaker verification\",\"authors\":\"Wei Rao, M. Mak, Kong-Aik Lee\",\"doi\":\"10.1109/ICASSP.2015.7178758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian PLDA with uncertainty propagation is effective for i-vector based speaker verification. The idea is to propagate the uncertainty of i-vectors caused by the duration variability of utterances to the PLDA model. However, a limitation of the method is the difficulty of performing length normalization on the posterior covariance matrix of an i-vector. This paper proposes a method to avoid performing length normalization on i-vectors in Gaussian PLDA modeling so that uncertainty propagation can be directly applied without transforming the posterior covariance matrices of i-vectors. Instead of performing length normalization on i-vectors independently, the proposed method normalizes the column vectors of the total variability matrix. Because the i-vectors of all utterances are derived from the same normalized total variability matrix, they will be subject to the same degree of normalization, thereby avoiding the undesirable distortion introduced by the utterance-dependent length-normalization process. Experimental results on both NIST 2010 and 2012 SREs demonstrate that the proposed method achieves a performance similar to (and in some situations better than) that of Gaussian PLDA with length normalization. The method has the potential of improving the performance of uncertainty propagation for i-vector/PLDA speaker verification.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

具有不确定性传播的高斯PLDA对基于i向量的说话人验证是有效的。这个想法是将由话语持续时间变化引起的i向量的不确定性传播到PLDA模型。然而,该方法的局限性是难以对i向量的后验协方差矩阵进行长度归一化。本文提出了一种避免在高斯PLDA建模中对i向量进行长度归一化处理的方法,可以在不变换i向量后验协方差矩阵的情况下直接应用不确定性传播。该方法不是对i向量单独进行长度归一化,而是对总变异性矩阵的列向量进行归一化。由于所有话语的i向量都来源于相同的归一化总变异性矩阵,因此它们将受到相同程度的归一化,从而避免了由依赖于话语的长度归一化过程引入的不良失真。在NIST 2010和2012 SREs上的实验结果表明,该方法的性能与长度归一化的高斯PLDA相似(在某些情况下甚至优于)。该方法具有提高i矢量/PLDA扬声器验证不确定性传播性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalization of total variability matrix for i-vector/PLDA speaker verification
Gaussian PLDA with uncertainty propagation is effective for i-vector based speaker verification. The idea is to propagate the uncertainty of i-vectors caused by the duration variability of utterances to the PLDA model. However, a limitation of the method is the difficulty of performing length normalization on the posterior covariance matrix of an i-vector. This paper proposes a method to avoid performing length normalization on i-vectors in Gaussian PLDA modeling so that uncertainty propagation can be directly applied without transforming the posterior covariance matrices of i-vectors. Instead of performing length normalization on i-vectors independently, the proposed method normalizes the column vectors of the total variability matrix. Because the i-vectors of all utterances are derived from the same normalized total variability matrix, they will be subject to the same degree of normalization, thereby avoiding the undesirable distortion introduced by the utterance-dependent length-normalization process. Experimental results on both NIST 2010 and 2012 SREs demonstrate that the proposed method achieves a performance similar to (and in some situations better than) that of Gaussian PLDA with length normalization. The method has the potential of improving the performance of uncertainty propagation for i-vector/PLDA speaker verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信