{"title":"i-vector/PLDA扬声器验证的总变异性矩阵归一化","authors":"Wei Rao, M. Mak, Kong-Aik Lee","doi":"10.1109/ICASSP.2015.7178758","DOIUrl":null,"url":null,"abstract":"Gaussian PLDA with uncertainty propagation is effective for i-vector based speaker verification. The idea is to propagate the uncertainty of i-vectors caused by the duration variability of utterances to the PLDA model. However, a limitation of the method is the difficulty of performing length normalization on the posterior covariance matrix of an i-vector. This paper proposes a method to avoid performing length normalization on i-vectors in Gaussian PLDA modeling so that uncertainty propagation can be directly applied without transforming the posterior covariance matrices of i-vectors. Instead of performing length normalization on i-vectors independently, the proposed method normalizes the column vectors of the total variability matrix. Because the i-vectors of all utterances are derived from the same normalized total variability matrix, they will be subject to the same degree of normalization, thereby avoiding the undesirable distortion introduced by the utterance-dependent length-normalization process. Experimental results on both NIST 2010 and 2012 SREs demonstrate that the proposed method achieves a performance similar to (and in some situations better than) that of Gaussian PLDA with length normalization. The method has the potential of improving the performance of uncertainty propagation for i-vector/PLDA speaker verification.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Normalization of total variability matrix for i-vector/PLDA speaker verification\",\"authors\":\"Wei Rao, M. Mak, Kong-Aik Lee\",\"doi\":\"10.1109/ICASSP.2015.7178758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian PLDA with uncertainty propagation is effective for i-vector based speaker verification. The idea is to propagate the uncertainty of i-vectors caused by the duration variability of utterances to the PLDA model. However, a limitation of the method is the difficulty of performing length normalization on the posterior covariance matrix of an i-vector. This paper proposes a method to avoid performing length normalization on i-vectors in Gaussian PLDA modeling so that uncertainty propagation can be directly applied without transforming the posterior covariance matrices of i-vectors. Instead of performing length normalization on i-vectors independently, the proposed method normalizes the column vectors of the total variability matrix. Because the i-vectors of all utterances are derived from the same normalized total variability matrix, they will be subject to the same degree of normalization, thereby avoiding the undesirable distortion introduced by the utterance-dependent length-normalization process. Experimental results on both NIST 2010 and 2012 SREs demonstrate that the proposed method achieves a performance similar to (and in some situations better than) that of Gaussian PLDA with length normalization. The method has the potential of improving the performance of uncertainty propagation for i-vector/PLDA speaker verification.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normalization of total variability matrix for i-vector/PLDA speaker verification
Gaussian PLDA with uncertainty propagation is effective for i-vector based speaker verification. The idea is to propagate the uncertainty of i-vectors caused by the duration variability of utterances to the PLDA model. However, a limitation of the method is the difficulty of performing length normalization on the posterior covariance matrix of an i-vector. This paper proposes a method to avoid performing length normalization on i-vectors in Gaussian PLDA modeling so that uncertainty propagation can be directly applied without transforming the posterior covariance matrices of i-vectors. Instead of performing length normalization on i-vectors independently, the proposed method normalizes the column vectors of the total variability matrix. Because the i-vectors of all utterances are derived from the same normalized total variability matrix, they will be subject to the same degree of normalization, thereby avoiding the undesirable distortion introduced by the utterance-dependent length-normalization process. Experimental results on both NIST 2010 and 2012 SREs demonstrate that the proposed method achieves a performance similar to (and in some situations better than) that of Gaussian PLDA with length normalization. The method has the potential of improving the performance of uncertainty propagation for i-vector/PLDA speaker verification.