用遗传算法确定最佳量化表

L. F. Costa, A. Veiga
{"title":"用遗传算法确定最佳量化表","authors":"L. F. Costa, A. Veiga","doi":"10.1109/PACRIM.2005.1517353","DOIUrl":null,"url":null,"abstract":"We present a model for generating a robust JPEG quantization table using the techniques of genetic algorithms at the JPEG image compression process. After several experiments over a range of generations, the final quantization table was obtained. The detection of the best quantization table (Q-table) using genetic algorithms with the JPEG standard is a great tool to obtain the desired quality of recovered image. This method compares the SNR of the quantization tables created during the process, and choose the one with the higher SNR for a group of natural images by the natural selection, the program also give conditions to change anytime the parameters of the program to produce better results.","PeriodicalId":346880,"journal":{"name":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Identification of the best quantization table using genetic algorithms\",\"authors\":\"L. F. Costa, A. Veiga\",\"doi\":\"10.1109/PACRIM.2005.1517353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a model for generating a robust JPEG quantization table using the techniques of genetic algorithms at the JPEG image compression process. After several experiments over a range of generations, the final quantization table was obtained. The detection of the best quantization table (Q-table) using genetic algorithms with the JPEG standard is a great tool to obtain the desired quality of recovered image. This method compares the SNR of the quantization tables created during the process, and choose the one with the higher SNR for a group of natural images by the natural selection, the program also give conditions to change anytime the parameters of the program to produce better results.\",\"PeriodicalId\":346880,\"journal\":{\"name\":\"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2005.1517353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2005.1517353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一个在JPEG图像压缩过程中使用遗传算法技术生成鲁棒JPEG量化表的模型。经过几代的实验,得到了最终的量化表。利用JPEG标准的遗传算法检测最佳量化表(q表)是获得理想质量的恢复图像的重要工具。该方法对过程中生成的量化表的信噪比进行比较,对一组自然图像进行自然选择,选择信噪比较高的量化表,并给出了随时改变程序参数的条件,以获得更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of the best quantization table using genetic algorithms
We present a model for generating a robust JPEG quantization table using the techniques of genetic algorithms at the JPEG image compression process. After several experiments over a range of generations, the final quantization table was obtained. The detection of the best quantization table (Q-table) using genetic algorithms with the JPEG standard is a great tool to obtain the desired quality of recovered image. This method compares the SNR of the quantization tables created during the process, and choose the one with the higher SNR for a group of natural images by the natural selection, the program also give conditions to change anytime the parameters of the program to produce better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信