二维标量场系综分析中经验正交函数的推广

Dominik Vietinghoff, Christian Heine, M. Böttinger, G. Scheuermann
{"title":"二维标量场系综分析中经验正交函数的推广","authors":"Dominik Vietinghoff, Christian Heine, M. Böttinger, G. Scheuermann","doi":"10.1109/PacificVis52677.2021.00014","DOIUrl":null,"url":null,"abstract":"To assess the reliability of weather forecasts and climate simulations, common practice is to generate large ensembles of numerical simulations. Analyzing such data is challenging and requires pattern and feature detection. For single time-dependent scalar fields, empirical orthogonal functions (EOFs) are a proven means to identify the main variation. In this paper, we present an extension of that concept to time-dependent ensemble data. We applied our methods to two ensemble data sets from climate research in order to investigate the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles\",\"authors\":\"Dominik Vietinghoff, Christian Heine, M. Böttinger, G. Scheuermann\",\"doi\":\"10.1109/PacificVis52677.2021.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To assess the reliability of weather forecasts and climate simulations, common practice is to generate large ensembles of numerical simulations. Analyzing such data is challenging and requires pattern and feature detection. For single time-dependent scalar fields, empirical orthogonal functions (EOFs) are a proven means to identify the main variation. In this paper, we present an extension of that concept to time-dependent ensemble data. We applied our methods to two ensemble data sets from climate research in order to investigate the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern.\",\"PeriodicalId\":199565,\"journal\":{\"name\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis52677.2021.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了评估天气预报和气候模拟的可靠性,通常的做法是生成大型数值模拟集合。分析这样的数据是具有挑战性的,需要模式和特征检测。对于单个时相关标量场,经验正交函数(EOFs)是一种被证明的识别主变分的方法。在本文中,我们将这一概念扩展到时间相关的集合数据。为了研究北大西洋涛动(NAO)和东大西洋涛动(EA)的模式,我们将我们的方法应用于气候研究的两个集合数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles
To assess the reliability of weather forecasts and climate simulations, common practice is to generate large ensembles of numerical simulations. Analyzing such data is challenging and requires pattern and feature detection. For single time-dependent scalar fields, empirical orthogonal functions (EOFs) are a proven means to identify the main variation. In this paper, we present an extension of that concept to time-dependent ensemble data. We applied our methods to two ensemble data sets from climate research in order to investigate the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信