一种在Twitter上检测和跟踪突发新闻的方法

Anmol Shukla, Dhruv Aggarwal, R. Keskar
{"title":"一种在Twitter上检测和跟踪突发新闻的方法","authors":"Anmol Shukla, Dhruv Aggarwal, R. Keskar","doi":"10.1145/2998476.2998491","DOIUrl":null,"url":null,"abstract":"Twitter is an interesting platform for the dissemination of news. The real-time nature and brevity of the tweets are conducive to sharing of information related to important events as they unfold. But, one of the greatest challenges is to find the tweets that we can characterize as news in the ocean of tweets. In this paper, we propose a novel method for detecting and tracking breaking news from Twitter in real-time. We filter the stream of incoming tweets to remove junk tweets using a text classification algorithm. We also compare the performance of different supervised text classification algorithms for this task. We then cluster similar tweets, so that, tweets in the same cluster relate to the same real-life event and can be termed as a breaking news. Finally, we rank the news using a dynamic scoring system which also allows us to track the news over a period of time.","PeriodicalId":171399,"journal":{"name":"Proceedings of the 9th Annual ACM India Conference","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Methodology to Detect and Track Breaking News on Twitter\",\"authors\":\"Anmol Shukla, Dhruv Aggarwal, R. Keskar\",\"doi\":\"10.1145/2998476.2998491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter is an interesting platform for the dissemination of news. The real-time nature and brevity of the tweets are conducive to sharing of information related to important events as they unfold. But, one of the greatest challenges is to find the tweets that we can characterize as news in the ocean of tweets. In this paper, we propose a novel method for detecting and tracking breaking news from Twitter in real-time. We filter the stream of incoming tweets to remove junk tweets using a text classification algorithm. We also compare the performance of different supervised text classification algorithms for this task. We then cluster similar tweets, so that, tweets in the same cluster relate to the same real-life event and can be termed as a breaking news. Finally, we rank the news using a dynamic scoring system which also allows us to track the news over a period of time.\",\"PeriodicalId\":171399,\"journal\":{\"name\":\"Proceedings of the 9th Annual ACM India Conference\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th Annual ACM India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2998476.2998491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th Annual ACM India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2998476.2998491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Twitter是一个有趣的新闻传播平台。推文的实时性和简洁性有助于在重要事件发生时分享相关信息。但是,最大的挑战之一是在推特的海洋中找到我们可以描述为新闻的推特。在本文中,我们提出了一种实时检测和跟踪Twitter突发新闻的新方法。我们使用文本分类算法过滤传入的tweet流以删除垃圾tweet。我们还比较了不同的监督文本分类算法在该任务中的性能。然后,我们将类似的推文聚类,这样,同一聚类中的推文与相同的现实生活事件相关,可以被称为突发新闻。最后,我们使用动态评分系统对新闻进行排名,该系统还允许我们在一段时间内跟踪新闻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Methodology to Detect and Track Breaking News on Twitter
Twitter is an interesting platform for the dissemination of news. The real-time nature and brevity of the tweets are conducive to sharing of information related to important events as they unfold. But, one of the greatest challenges is to find the tweets that we can characterize as news in the ocean of tweets. In this paper, we propose a novel method for detecting and tracking breaking news from Twitter in real-time. We filter the stream of incoming tweets to remove junk tweets using a text classification algorithm. We also compare the performance of different supervised text classification algorithms for this task. We then cluster similar tweets, so that, tweets in the same cluster relate to the same real-life event and can be termed as a breaking news. Finally, we rank the news using a dynamic scoring system which also allows us to track the news over a period of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信