操纵欠驱动船舶的深度强化学习算法

Le Pham Tuyen, Md. Abu Layek, Ngo Anh Vien, TaeChoong Chung
{"title":"操纵欠驱动船舶的深度强化学习算法","authors":"Le Pham Tuyen, Md. Abu Layek, Ngo Anh Vien, TaeChoong Chung","doi":"10.1109/MFI.2017.8170388","DOIUrl":null,"url":null,"abstract":"Based on state-of-the-art deep reinforcement learning (Deep RL) algorithms, two controllers are proposed to pass a ship through a specified gate. Deep RL is a powerful approach to learn a complex controller which is expected to adapt to different situations of systems. This paper explains how to apply these algorithms to ship steering problem. The simulation results show advantages of these algorithms in reproducing reliable and stable controllers.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Deep reinforcement learning algorithms for steering an underactuated ship\",\"authors\":\"Le Pham Tuyen, Md. Abu Layek, Ngo Anh Vien, TaeChoong Chung\",\"doi\":\"10.1109/MFI.2017.8170388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on state-of-the-art deep reinforcement learning (Deep RL) algorithms, two controllers are proposed to pass a ship through a specified gate. Deep RL is a powerful approach to learn a complex controller which is expected to adapt to different situations of systems. This paper explains how to apply these algorithms to ship steering problem. The simulation results show advantages of these algorithms in reproducing reliable and stable controllers.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

基于最先进的深度强化学习(deep RL)算法,提出了两个控制器使船舶通过指定的门。深度强化学习是一种学习复杂控制器的有效方法,可以适应不同的系统情况。本文阐述了如何将这些算法应用于船舶操舵问题。仿真结果表明,这些算法在生成可靠稳定的控制器方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep reinforcement learning algorithms for steering an underactuated ship
Based on state-of-the-art deep reinforcement learning (Deep RL) algorithms, two controllers are proposed to pass a ship through a specified gate. Deep RL is a powerful approach to learn a complex controller which is expected to adapt to different situations of systems. This paper explains how to apply these algorithms to ship steering problem. The simulation results show advantages of these algorithms in reproducing reliable and stable controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信