无尺度特征-空间匹配

Chao Zhang, Tingzhi Shen
{"title":"无尺度特征-空间匹配","authors":"Chao Zhang, Tingzhi Shen","doi":"10.1109/DICTA.2013.6691526","DOIUrl":null,"url":null,"abstract":"In this paper, we improve the discriminability of the Scale-Less SIFT (SLS) descriptor, which is constructed without requiring scale estimation of interest points. We thereby avoid to find stable scales which are difficult to obtain in many cases. Scale-Less SIFT descriptors of interest points are represented as sets of SIFT descriptors at multiple scales. We construct the linear subspace as the geometric representation for sets of SIFT descriptors. Then an embedding representation is learned that combines the descriptor similarity across scales and the spatial arrangement in a unified Euclidean embedding space. The learned subspace are highly capable of capturing the scale-varying values of SIFT descriptors. Experiment results demonstrate significant improvements by our constructed descriptors over existing methods on standard benchmark datasets.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-Less Feature-Spatial Matching\",\"authors\":\"Chao Zhang, Tingzhi Shen\",\"doi\":\"10.1109/DICTA.2013.6691526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we improve the discriminability of the Scale-Less SIFT (SLS) descriptor, which is constructed without requiring scale estimation of interest points. We thereby avoid to find stable scales which are difficult to obtain in many cases. Scale-Less SIFT descriptors of interest points are represented as sets of SIFT descriptors at multiple scales. We construct the linear subspace as the geometric representation for sets of SIFT descriptors. Then an embedding representation is learned that combines the descriptor similarity across scales and the spatial arrangement in a unified Euclidean embedding space. The learned subspace are highly capable of capturing the scale-varying values of SIFT descriptors. Experiment results demonstrate significant improvements by our constructed descriptors over existing methods on standard benchmark datasets.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文改进了无尺度SIFT (SLS)描述子的可判别性,该描述子不需要对兴趣点进行尺度估计。因此,我们避免找到在许多情况下难以获得的稳定尺度。兴趣点的无尺度SIFT描述符表示为多个尺度的SIFT描述符集合。我们构造线性子空间作为SIFT描述符集合的几何表示。然后,结合描述子在尺度上的相似性和统一欧几里得嵌入空间中的空间排列,学习一种嵌入表示。学习到的子空间能够很好地捕获SIFT描述子的尺度变化值。实验结果表明,我们构建的描述符在标准基准数据集上比现有方法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scale-Less Feature-Spatial Matching
In this paper, we improve the discriminability of the Scale-Less SIFT (SLS) descriptor, which is constructed without requiring scale estimation of interest points. We thereby avoid to find stable scales which are difficult to obtain in many cases. Scale-Less SIFT descriptors of interest points are represented as sets of SIFT descriptors at multiple scales. We construct the linear subspace as the geometric representation for sets of SIFT descriptors. Then an embedding representation is learned that combines the descriptor similarity across scales and the spatial arrangement in a unified Euclidean embedding space. The learned subspace are highly capable of capturing the scale-varying values of SIFT descriptors. Experiment results demonstrate significant improvements by our constructed descriptors over existing methods on standard benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信