多元指数幂模型鲁棒估计的凸公式

N. Ouzir, J. Pesquet, F. Pascal
{"title":"多元指数幂模型鲁棒估计的凸公式","authors":"N. Ouzir, J. Pesquet, F. Pascal","doi":"10.1109/icassp43922.2022.9747354","DOIUrl":null,"url":null,"abstract":"The multivariate power exponential (MEP) distribution can model a broad range of signals. In noisy scenarios, the robust estimation of the MEP parameters has been traditionally addressed by a fixed-point approach associated with a nonconvex optimization problem. Establishing convergence properties for this approach when the distribution mean is unknown is still an open problem. As an alternative, this paper presents a novel convex formulation for robustly estimating MEP parameters in the presence of multiplicative perturbations. The proposed approach is grounded on a re-parametrization of the original likelihood function in a way that ensures convexity. We also show that this property is preserved for several typical regularization functions. Compared with the robust Tyler’s estimator, the proposed method shows a more accurate precision matrix estimation, with similar mean and covariance estimation performance.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convex Formulation for the Robust Estimation of Multivariate Exponential Power Models\",\"authors\":\"N. Ouzir, J. Pesquet, F. Pascal\",\"doi\":\"10.1109/icassp43922.2022.9747354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multivariate power exponential (MEP) distribution can model a broad range of signals. In noisy scenarios, the robust estimation of the MEP parameters has been traditionally addressed by a fixed-point approach associated with a nonconvex optimization problem. Establishing convergence properties for this approach when the distribution mean is unknown is still an open problem. As an alternative, this paper presents a novel convex formulation for robustly estimating MEP parameters in the presence of multiplicative perturbations. The proposed approach is grounded on a re-parametrization of the original likelihood function in a way that ensures convexity. We also show that this property is preserved for several typical regularization functions. Compared with the robust Tyler’s estimator, the proposed method shows a more accurate precision matrix estimation, with similar mean and covariance estimation performance.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多元幂指数(MEP)分布可以模拟大范围的信号。在噪声情况下,MEP参数的鲁棒估计传统上是通过与非凸优化问题相关的不动点方法来解决的。当分布均值未知时,如何确定该方法的收敛性仍然是一个有待解决的问题。作为一种替代方法,本文提出了一种新的凸公式,用于鲁棒估计存在乘性扰动的MEP参数。提出的方法是基于原始似然函数的重新参数化,以确保凸性。我们还证明了这一性质对于几个典型的正则化函数是保留的。与鲁棒Tyler估计方法相比,该方法具有更精确的矩阵估计精度,且具有相近的均值和协方差估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Convex Formulation for the Robust Estimation of Multivariate Exponential Power Models
The multivariate power exponential (MEP) distribution can model a broad range of signals. In noisy scenarios, the robust estimation of the MEP parameters has been traditionally addressed by a fixed-point approach associated with a nonconvex optimization problem. Establishing convergence properties for this approach when the distribution mean is unknown is still an open problem. As an alternative, this paper presents a novel convex formulation for robustly estimating MEP parameters in the presence of multiplicative perturbations. The proposed approach is grounded on a re-parametrization of the original likelihood function in a way that ensures convexity. We also show that this property is preserved for several typical regularization functions. Compared with the robust Tyler’s estimator, the proposed method shows a more accurate precision matrix estimation, with similar mean and covariance estimation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信