{"title":"多元指数幂模型鲁棒估计的凸公式","authors":"N. Ouzir, J. Pesquet, F. Pascal","doi":"10.1109/icassp43922.2022.9747354","DOIUrl":null,"url":null,"abstract":"The multivariate power exponential (MEP) distribution can model a broad range of signals. In noisy scenarios, the robust estimation of the MEP parameters has been traditionally addressed by a fixed-point approach associated with a nonconvex optimization problem. Establishing convergence properties for this approach when the distribution mean is unknown is still an open problem. As an alternative, this paper presents a novel convex formulation for robustly estimating MEP parameters in the presence of multiplicative perturbations. The proposed approach is grounded on a re-parametrization of the original likelihood function in a way that ensures convexity. We also show that this property is preserved for several typical regularization functions. Compared with the robust Tyler’s estimator, the proposed method shows a more accurate precision matrix estimation, with similar mean and covariance estimation performance.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convex Formulation for the Robust Estimation of Multivariate Exponential Power Models\",\"authors\":\"N. Ouzir, J. Pesquet, F. Pascal\",\"doi\":\"10.1109/icassp43922.2022.9747354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multivariate power exponential (MEP) distribution can model a broad range of signals. In noisy scenarios, the robust estimation of the MEP parameters has been traditionally addressed by a fixed-point approach associated with a nonconvex optimization problem. Establishing convergence properties for this approach when the distribution mean is unknown is still an open problem. As an alternative, this paper presents a novel convex formulation for robustly estimating MEP parameters in the presence of multiplicative perturbations. The proposed approach is grounded on a re-parametrization of the original likelihood function in a way that ensures convexity. We also show that this property is preserved for several typical regularization functions. Compared with the robust Tyler’s estimator, the proposed method shows a more accurate precision matrix estimation, with similar mean and covariance estimation performance.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Convex Formulation for the Robust Estimation of Multivariate Exponential Power Models
The multivariate power exponential (MEP) distribution can model a broad range of signals. In noisy scenarios, the robust estimation of the MEP parameters has been traditionally addressed by a fixed-point approach associated with a nonconvex optimization problem. Establishing convergence properties for this approach when the distribution mean is unknown is still an open problem. As an alternative, this paper presents a novel convex formulation for robustly estimating MEP parameters in the presence of multiplicative perturbations. The proposed approach is grounded on a re-parametrization of the original likelihood function in a way that ensures convexity. We also show that this property is preserved for several typical regularization functions. Compared with the robust Tyler’s estimator, the proposed method shows a more accurate precision matrix estimation, with similar mean and covariance estimation performance.