概率推理与风险约束动态频谱接入

Todd W. Martin, Kuo-Chu Chang
{"title":"概率推理与风险约束动态频谱接入","authors":"Todd W. Martin, Kuo-Chu Chang","doi":"10.1109/DySPAN.2017.7920795","DOIUrl":null,"url":null,"abstract":"Uncertainties regarding wireless propagation environments pose challenges for spectrum management in general and specifically hinder the implementation of dynamic spectrum sharing systems. Without the ability to reliably evaluate interference risks, spectrum sharing policies specify spectrum access behaviors such as exclusion zones and maximum transmit powers based on risk thresholds applied to statistical results from propagation models and measurements. Because the models can contain significant levels of uncertainty, establishing behavior limits for low interference risk necessarily results in significant spectrum access inefficiencies. It is only by reducing the degree of uncertainty that risk thresholds can be maintained while increasing spectrum access efficiency. Probabilistic reasoning applied to dynamic spectrum sharing systems provides potential to increase spectrum sharing by reducing situational uncertainty. Further, probabilistic reasoning approaches enable risk-constrained spectrum access, a concept in which regulators and spectrum users establish spectrum access rules defining acceptable levels of interference and spectrum access risks. This paper develops the concepts and underlying theory of probabilistic reasoning and risk-constrained spectrum access for spectrum sharing. It further presents simulation results showing that situation-specific probabilistic reasoning combined with risk-constrained spectrum access potentially enables greater spectrum sharing. Specifically, probabilistic reasoning with real-time spectrum sensing is shown to greatly reduce situational uncertainty, which then results in better interference prevention and more effective spectrum sharing as measured by user capacity and overall network density.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probabilistic reasoning and risk-constrained dynamic spectrum access\",\"authors\":\"Todd W. Martin, Kuo-Chu Chang\",\"doi\":\"10.1109/DySPAN.2017.7920795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainties regarding wireless propagation environments pose challenges for spectrum management in general and specifically hinder the implementation of dynamic spectrum sharing systems. Without the ability to reliably evaluate interference risks, spectrum sharing policies specify spectrum access behaviors such as exclusion zones and maximum transmit powers based on risk thresholds applied to statistical results from propagation models and measurements. Because the models can contain significant levels of uncertainty, establishing behavior limits for low interference risk necessarily results in significant spectrum access inefficiencies. It is only by reducing the degree of uncertainty that risk thresholds can be maintained while increasing spectrum access efficiency. Probabilistic reasoning applied to dynamic spectrum sharing systems provides potential to increase spectrum sharing by reducing situational uncertainty. Further, probabilistic reasoning approaches enable risk-constrained spectrum access, a concept in which regulators and spectrum users establish spectrum access rules defining acceptable levels of interference and spectrum access risks. This paper develops the concepts and underlying theory of probabilistic reasoning and risk-constrained spectrum access for spectrum sharing. It further presents simulation results showing that situation-specific probabilistic reasoning combined with risk-constrained spectrum access potentially enables greater spectrum sharing. Specifically, probabilistic reasoning with real-time spectrum sensing is shown to greatly reduce situational uncertainty, which then results in better interference prevention and more effective spectrum sharing as measured by user capacity and overall network density.\",\"PeriodicalId\":221877,\"journal\":{\"name\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DySPAN.2017.7920795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无线传播环境的不确定性给频谱管理带来了挑战,特别是阻碍了动态频谱共享系统的实现。由于无法可靠地评估干扰风险,频谱共享策略根据传播模型和测量的统计结果应用风险阈值来指定频谱接入行为,如禁区和最大发射功率。由于模型可能包含显著的不确定性水平,为低干扰风险建立行为限制必然导致显著的频谱访问效率低下。只有降低不确定性,才能在保持风险阈值的同时提高频谱接入效率。概率推理应用于动态频谱共享系统提供了通过减少情景不确定性来增加频谱共享的潜力。此外,概率推理方法使风险约束频谱接入成为可能,在这一概念中,监管机构和频谱用户建立频谱接入规则,定义可接受的干扰水平和频谱接入风险。本文发展了频谱共享的概率推理和风险约束频谱接入的概念和基本理论。进一步给出了仿真结果,表明特定情况的概率推理与风险约束频谱接入相结合可能实现更大的频谱共享。具体而言,具有实时频谱感知的概率推理可以大大降低情境不确定性,从而通过用户容量和整体网络密度来衡量更好的干扰预防和更有效的频谱共享。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic reasoning and risk-constrained dynamic spectrum access
Uncertainties regarding wireless propagation environments pose challenges for spectrum management in general and specifically hinder the implementation of dynamic spectrum sharing systems. Without the ability to reliably evaluate interference risks, spectrum sharing policies specify spectrum access behaviors such as exclusion zones and maximum transmit powers based on risk thresholds applied to statistical results from propagation models and measurements. Because the models can contain significant levels of uncertainty, establishing behavior limits for low interference risk necessarily results in significant spectrum access inefficiencies. It is only by reducing the degree of uncertainty that risk thresholds can be maintained while increasing spectrum access efficiency. Probabilistic reasoning applied to dynamic spectrum sharing systems provides potential to increase spectrum sharing by reducing situational uncertainty. Further, probabilistic reasoning approaches enable risk-constrained spectrum access, a concept in which regulators and spectrum users establish spectrum access rules defining acceptable levels of interference and spectrum access risks. This paper develops the concepts and underlying theory of probabilistic reasoning and risk-constrained spectrum access for spectrum sharing. It further presents simulation results showing that situation-specific probabilistic reasoning combined with risk-constrained spectrum access potentially enables greater spectrum sharing. Specifically, probabilistic reasoning with real-time spectrum sensing is shown to greatly reduce situational uncertainty, which then results in better interference prevention and more effective spectrum sharing as measured by user capacity and overall network density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信