时长敏感说话人识别中i向量特征空间的熵分析

A. Nautsch, C. Rathgeb, R. Saeidi, C. Busch
{"title":"时长敏感说话人识别中i向量特征空间的熵分析","authors":"A. Nautsch, C. Rathgeb, R. Saeidi, C. Busch","doi":"10.1109/ICASSP.2015.7178857","DOIUrl":null,"url":null,"abstract":"The vast majority of speaker recognition cross-entropy evaluations are focused on score domain. By examining the generalized relative distance between genuine and impostor sub-spaces, biometric characteristics become comparable to other authentication approaches. In this paper we demonstrate that the i-vector feature space's biometric information measured by relative entropy is comparable to e.g., knowledge-based mechanisms or face recognition. Examining NIST SRE 2004-2010 corpora, short samples of e.g, 5 seconds duration, comprise already 127 bits in a text-independent scenario. Further, the vast majority of short samples does not fall below 50% of the biometric information of samples having a duration of more than 40 seconds. The generalized i-vector feature space entropy of long samples corresponds to 182.1 bits, and the highest lower entropy bound of a subject was observed at 471.6 bits.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Entropy analysis of i-vector feature spaces in duration-sensitive speaker recognition\",\"authors\":\"A. Nautsch, C. Rathgeb, R. Saeidi, C. Busch\",\"doi\":\"10.1109/ICASSP.2015.7178857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vast majority of speaker recognition cross-entropy evaluations are focused on score domain. By examining the generalized relative distance between genuine and impostor sub-spaces, biometric characteristics become comparable to other authentication approaches. In this paper we demonstrate that the i-vector feature space's biometric information measured by relative entropy is comparable to e.g., knowledge-based mechanisms or face recognition. Examining NIST SRE 2004-2010 corpora, short samples of e.g, 5 seconds duration, comprise already 127 bits in a text-independent scenario. Further, the vast majority of short samples does not fall below 50% of the biometric information of samples having a duration of more than 40 seconds. The generalized i-vector feature space entropy of long samples corresponds to 182.1 bits, and the highest lower entropy bound of a subject was observed at 471.6 bits.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

绝大多数的说话人识别交叉熵评价都集中在分数域。通过检查真实和冒名顶替子空间之间的广义相对距离,生物特征可以与其他认证方法相比较。在本文中,我们证明了由相对熵测量的i向量特征空间的生物特征信息可与例如基于知识的机制或人脸识别相比较。检查NIST SRE 2004-2010语料库,例如持续时间为5秒的短样本,在独立于文本的场景中已经包含127位。此外,绝大多数短样本不低于持续时间超过40秒的样本的生物特征信息的50%。长样本的广义i向量特征空间熵对应于182.1 bits,受试者的最高下熵界为471.6 bits。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy analysis of i-vector feature spaces in duration-sensitive speaker recognition
The vast majority of speaker recognition cross-entropy evaluations are focused on score domain. By examining the generalized relative distance between genuine and impostor sub-spaces, biometric characteristics become comparable to other authentication approaches. In this paper we demonstrate that the i-vector feature space's biometric information measured by relative entropy is comparable to e.g., knowledge-based mechanisms or face recognition. Examining NIST SRE 2004-2010 corpora, short samples of e.g, 5 seconds duration, comprise already 127 bits in a text-independent scenario. Further, the vast majority of short samples does not fall below 50% of the biometric information of samples having a duration of more than 40 seconds. The generalized i-vector feature space entropy of long samples corresponds to 182.1 bits, and the highest lower entropy bound of a subject was observed at 471.6 bits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信